cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226719 a(n) = the first member of a twin prime pair whose sum equals the sums of n consecutive pairs of twin primes.

This page as a plain text file.
%I A226719 #8 Jun 17 2013 13:54:12
%S A226719 3,17,59,101,107,521,239,569,881,1427,1091,1289,1301,3167,2027,2309,
%T A226719 8837,2969,3389,3821,4787,13679,23909,27407,10889,7877,14627,16631,
%U A226719 21011,13997,17027,20441,12107,26711,36467,36779,38567,32909,27479,18521,19751,32057,48479
%N A226719 a(n) = the first member of a twin prime pair whose sum equals the sums of n consecutive pairs of twin primes.
%C A226719 What is the origin of the lower bound of a(n), see graph?
%C A226719 Apparently a(n) > n^(5/2) but what about more strict bound?
%H A226719 Zak Seidov, <a href="/A226719/b226719.txt">Table of n, a(n) for n = 1..1000</a>
%e A226719 a(1) = 3 because 3 + 5 = 3 + 5 (trivial case)
%e A226719 a(2) = 17 = A225943(1)
%e A226719 a(3) = 59 = A226692(1)
%e A226719 a(4) = 101 because 101 + 103 = (11 + 13) + (17 + 19) + (29 + 31) + (41 + 43)
%e A226719 a(5) = 107 because 107 + 109 = (5 + 7) +  (11 + 13) + (17 + 19) + (29 + 31) + (41 + 43)
%t A226719 n = 1; t = {}; While[d = Intersection[s, Total /@ Partition[s, n, 1]]; Length[d] > 0, AppendTo[t, d[[1]] - 1]; n++]; t (* _T. D. Noe_, Jun 17 2013 *)
%Y A226719 Cf. A226692 (three pairs), A225943 (two pairs).
%K A226719 nonn
%O A226719 1,1
%A A226719 _Zak Seidov_, Jun 15 2013