This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226728 #30 Aug 16 2013 03:55:23 %S A226728 1,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0, %T A226728 0,0,0,0,0,1,0,0,0,-2,0,0,0,3,0,0,0,-2,0,0,0,0,0,0,0,2,0,0,0,-4,0,0,0, %U A226728 4,0,0,0,-3,0,0,0,1,0,0,0,3,0,0,0,-6,0,0,0,7,0,0,0,-5,0,0,0,0,0,0,0,5,0,0,0,-9,0 %N A226728 G.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ). %F A226728 G.f.: 1/(1+q/(1-q/(1+q^3/(1-q^3/(1+q^5/(1-q^5/(1+q^7/(1-q^7/(1+ ... ))))))))). %F A226728 G.f.: 1/W(0), where W(k)= 1 + x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Aug 16 2013 %o A226728 (PARI) N = 166; q = 'q + O('q^N); %o A226728 G(k) = if(k>N, 1, 1 + q^(k+1) / (1 - q^(k+1) / G(k+2) ) ); %o A226728 gf = 1 / G(0); %o A226728 Vec(gf) %Y A226728 Cf. A049346 (g.f.: 1 - 1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ). %Y A226728 Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ). %Y A226728 Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ). %Y A226728 Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ). %K A226728 sign %O A226728 0,42 %A A226728 _Joerg Arndt_, Jun 29 2013