cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226728 G.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ).

This page as a plain text file.
%I A226728 #30 Aug 16 2013 03:55:23
%S A226728 1,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,
%T A226728 0,0,0,0,0,1,0,0,0,-2,0,0,0,3,0,0,0,-2,0,0,0,0,0,0,0,2,0,0,0,-4,0,0,0,
%U A226728 4,0,0,0,-3,0,0,0,1,0,0,0,3,0,0,0,-6,0,0,0,7,0,0,0,-5,0,0,0,0,0,0,0,5,0,0,0,-9,0
%N A226728 G.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ).
%F A226728 G.f.: 1/(1+q/(1-q/(1+q^3/(1-q^3/(1+q^5/(1-q^5/(1+q^7/(1-q^7/(1+ ... ))))))))).
%F A226728 G.f.: 1/W(0), where W(k)= 1 + x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Aug 16 2013
%o A226728 (PARI) N = 166;  q = 'q + O('q^N);
%o A226728 G(k) = if(k>N, 1, 1 + q^(k+1) / (1 - q^(k+1) / G(k+2) ) );
%o A226728 gf = 1 / G(0);
%o A226728 Vec(gf)
%Y A226728 Cf. A049346 (g.f.: 1 - 1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
%Y A226728 Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
%Y A226728 Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
%Y A226728 Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
%K A226728 sign
%O A226728 0,42
%A A226728 _Joerg Arndt_, Jun 29 2013