cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226744 Round((10^n)/(log(10^n) - 1)).

This page as a plain text file.
%I A226744 #14 Feb 16 2025 08:33:20
%S A226744 8,28,169,1218,9512,78030,661459,5740304,50701542,454011971,
%T A226744 4110416301,37550193650,345618860221,3201414635781,29816233849001,
%U A226744 279007258230820,2621647966812031,24723998785919976,233922961602470391,2219671974013732243
%N A226744 Round((10^n)/(log(10^n) - 1)).
%D A226744 A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.
%H A226744 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendresConstant.html">Legendre's Constant</a>
%H A226744 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeCountingFunction.html">Prime Counting Function</a>
%H A226744 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeNumberTheorem.html">Prime Number Theorem</a>
%F A226744 a(n) = round((10^n)/(log(10^n) - 1)).
%e A226744 a(2) = 28 because (10^2)/(log(10^2) - 1) = 27.7379415786....
%t A226744 Table[Round[10^n/(Log[10^n] - 1)], {n, 20}]
%o A226744 (PARI) for(n=1, 20, print1(round(10^n/(log(10^n)-1)), ", "));
%Y A226744 Another version of A193257.
%Y A226744 Cf. A058289, A006880, A057834, A000720.
%K A226744 nonn
%O A226744 1,1
%A A226744 _Arkadiusz Wesolowski_, Aug 31 2013