This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226759 #7 Jan 23 2014 10:03:45 %S A226759 1,2,12,120,1680,30480,678720,17902080,545529600,18854519040, %T A226759 728651911680,31133305082880,1457247407616000,74151941277173760, %U A226759 4075563460173004800,240617659203765043200,15186689706926068531200,1020415122190724766105600,72722026905140804154163200 %N A226759 E.g.f.: A(x) = x + tan(A(x)^2). %F A226759 E.g.f.: Series_Reversion(x - tan(x^2)). %F A226759 E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) tan(x^2)^n/n!. %F A226759 E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1/x)*tan(x^2)^n/n! ). %F A226759 a(n) ~ n^(n-1) * sqrt(r*s/(1 + 4*s^2*(s-r))) / (exp(n) * r^n), where s = 0.4749798472710374904... is the root of the equation 2*s = cos(s^2)^2, and r = s - tan(s^2) = 0.2454667961619663296... - _Vaclav Kotesovec_, Jan 23 2014 %e A226759 E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/4! +... %e A226759 where A(x - tan(x^2)) = x and A(x) = x + tan(A(x)^2). %e A226759 Series expansions: %e A226759 A(x) = x + tan(x^2) + d/dx tan(x^2)^2/2! + d^2/dx^2 tan(x^2)^3/3! + d^3/dx^3 tan(x^2)^4/4! +... %e A226759 log(A(x)/x) = tan(x^2)/x + d/dx (tan(x^2)^2/x)/2! + d^2/dx^2 (tan(x^2)^3/x)/3! + d^3/dx^3 (tan(x^2)^4/x)/4! +... %t A226759 Rest[CoefficientList[InverseSeries[Series[x - Tan[x^2],{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 23 2014 *) %o A226759 (PARI) {a(n)=n!*polcoeff(serreverse(x-tan(x^2+x^2*O(x^n))), n)} %o A226759 for(n=1, 25, print1(a(n), ", ")) %o A226759 (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} %o A226759 {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, tan(x^2+x*O(x^n))^m)/m!); n!*polcoeff(A, n)} %o A226759 for(n=1, 25, print1(a(n), ", ")) %o A226759 (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} %o A226759 {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, tan(x^2+x*O(x^n))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)} %o A226759 for(n=1, 25, print1(a(n), ", ")) %Y A226759 Cf. A226760, A215188, A226758. %K A226759 nonn %O A226759 1,2 %A A226759 _Paul D. Hanna_, Jun 16 2013