cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226764 Least k such that 1 + 1/2 + ... + 1/k < 1/(k+1) + ... + 1/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 4

Views

Author

Clark Kimberling, Jun 19 2013

Keywords

Comments

For k = 1..20, the runlength of k's is given by 7, 11, 14, 18, 21, 25, 29, 32, 36, 39, 42, 47, 50, 53, 57, 61, 64, 67, 72, 74.

Examples

			1/3 + 1/4 + ... + 1/10 < 1 + 1/2 < 1/3 + 1/4 + ... + 1/11, so that a(11) = 2.
		

Crossrefs

Cf. A226762.

Programs

  • Mathematica
    (* first program *)
    h[n_] := HarmonicNumber[n]; f[n_, k_] := f[n, k] = If[2 h[k] <= h[n] && 2 h[k + 1] > h[n], 1, 0]; t[n_] := t[n] = Table[f[n, k], {k, 1, n}]; a[n_] := First[Position[t[n], 1]]; u = Flatten[Table[a[n], {n, 4, 500}]]
    (* second program, with plot *)
    a[1] = 0; a[n_] := a[n] = NestWhile[# + 1 &, a[n - 1] + 1, Sum[1/k, {k, 1, #}] < Sum[1/k, {k, # + 1, n}] &] - 1; A226764 = Map[a, Range[4, 500]]; ListLogLogPlot[A226764]  (* Peter J. C. Moses, Jun 20 2013 *)

Formula

a(n) = Sum_{k>=1} sign(1 - sign(2*H_k - H_n)). - Mats Granvik, Apr 06 2021