A226764 Least k such that 1 + 1/2 + ... + 1/k < 1/(k+1) + ... + 1/n.
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 4
Keywords
Examples
1/3 + 1/4 + ... + 1/10 < 1 + 1/2 < 1/3 + 1/4 + ... + 1/11, so that a(11) = 2.
Links
- Clark Kimberling, Table of n, a(n) for n = 4..1000
Crossrefs
Cf. A226762.
Programs
-
Mathematica
(* first program *) h[n_] := HarmonicNumber[n]; f[n_, k_] := f[n, k] = If[2 h[k] <= h[n] && 2 h[k + 1] > h[n], 1, 0]; t[n_] := t[n] = Table[f[n, k], {k, 1, n}]; a[n_] := First[Position[t[n], 1]]; u = Flatten[Table[a[n], {n, 4, 500}]] (* second program, with plot *) a[1] = 0; a[n_] := a[n] = NestWhile[# + 1 &, a[n - 1] + 1, Sum[1/k, {k, 1, #}] < Sum[1/k, {k, # + 1, n}] &] - 1; A226764 = Map[a, Range[4, 500]]; ListLogLogPlot[A226764] (* Peter J. C. Moses, Jun 20 2013 *)
Formula
a(n) = Sum_{k>=1} sign(1 - sign(2*H_k - H_n)). - Mats Granvik, Apr 06 2021
Comments