cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226777 Higher powers that are sums of two distinct higher powers.

This page as a plain text file.
%I A226777 #21 Feb 14 2018 04:02:29
%S A226777 243,2744,6561,177147,185193,474552,614656,810000,941192,1124864,
%T A226777 1419857,1500625,3241792,4782969,7962624,11239424,16003008,17850625,
%U A226777 21952000,26873856,28372625,52200625,68574961,82312875,117649000,129140163,162771336,200201625,238328000
%N A226777 Higher powers that are sums of two distinct higher powers.
%C A226777 x is in the sequence iff there are distinct y,z such that x = y + z and x,y,z are all in A076467.
%H A226777 Robert Israel and Reinhard Zumkeller, <a href="/A226777/b226777.txt">Table of n, a(n) for n = 1..1000</a> (first 264 terms from Robert Israel)
%e A226777 243 is in the sequence because 243 = 3^5 = 3^3 + 6^3.
%p A226777 N :=  10^12: # to get terms up to N
%p A226777 S := {seq(seq(a^x, a=1 .. floor(N^(1/x))), x = 3 .. floor(log[2](N)))}:
%p A226777 f:= proc(n) local L; L:= S[1..n-1] minus {S[n]/2}; nops(map2(`-`,S[n],L) intersect L) > 0 end proc;
%p A226777 A:= map(t -> S[t], select(f,[$1..nops(S)]));
%t A226777 max = 3*10^8; pp = Join[{1}, Table[n^k, {k, 3, Floor[Log[2, max]]}, {n, 2, Floor[max^(1/k)]}] // Flatten // Union]; Select[Total /@ Subsets[pp, {2}], MemberQ[pp, #]&] // Union (* _Jean-François Alcover_, Feb 14 2018 *)
%o A226777 (Haskell)
%o A226777 import qualified Data.Set as Set (null, split, filter)
%o A226777 import Data.Set (Set, empty, insert, member)
%o A226777 a226777 n = a226777_list !! (n-1)
%o A226777 a226777_list = f a076467_list empty where
%o A226777    f (x:xs) s | Set.null $ Set.filter ((`member` s) . (x -)) s'
%o A226777                           = f xs (x `insert` s)
%o A226777               | otherwise = x : f xs (x `insert` s)
%o A226777               where (s', _) = Set.split (x `div` 2) s
%o A226777 -- _Reinhard Zumkeller_, Sep 13, Jun 19 2013
%K A226777 nonn
%O A226777 1,1
%A A226777 _Robert Israel_, Jun 17 2013