This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226780 #13 Jun 21 2013 20:08:06 %S A226780 1,0,1,3,0,1,26,9,0,1,453,104,18,0,1,11844,2265,260,30,0,1,439975, %T A226780 71064,6795,520,45,0,1,22056222,3079825,248724,15855,910,63,0,1, %U A226780 1436236809,176449776,12319300,663264,31710,1456,84,0,1 %N A226780 Triangular array read by rows. T(n,k) is the number of 2 tuple lists of length n that have exactly k coincidences; n >= 0, 0 <= k <= n. %C A226780 Consider the set (with cardinality n!^2) of (ordered) lists of n two tuples such that all numbers from 1 to n appear as the first as well as the second tuple entry. If the j-th two tuple of the list is (j,j) then call it a coincidence. T(n,k) is the number of such lists that have k coincidences. %H A226780 Alois P. Heinz, <a href="/A226780/b226780.txt">Rows n = 0..100, flattened</a> %F A226780 T(n,k) = binomial(n,k) * A089041(n-k). %F A226780 Row sums = n!^2. %F A226780 T(n,0) = A089041(n). %F A226780 The expected number of coincidences, Sum_{k=0..n} T(n,k)*k/n!^2 = 1/n. %e A226780 1; %e A226780 0, 1; %e A226780 3, 0, 1; %e A226780 26, 9, 0, 1; %e A226780 453, 104, 18, 0, 1; %e A226780 11844, 2265, 260, 30, 0, 1; %e A226780 439975, 71064, 6795, 520, 45, 0, 1; %e A226780 22056222, 3079825, 248724, 15855, 910, 63, 0, 1; %p A226780 b:= proc(n) option remember; %p A226780 `if`(n<2, 1-n, n^2*b(n-1)+n*(n-1)*b(n-2)+(-1)^n) %p A226780 end: %p A226780 T:= (n, k)-> binomial(n, k) * b(n-k): %p A226780 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Jun 21 2013 %t A226780 a = Table[Sum[(-1)^k Binomial[n,k](n-k)!^2, {k,0,n}], {n,0,15}]; Table[Drop[Transpose[Table[Table[Binomial[n,i]*a[[n-i+1]], {n,0,10}], {i,0,10}]][[j]], -11+j], {j, 10}]//Grid %Y A226780 Cf. A008290. %K A226780 nonn,tabl %O A226780 0,4 %A A226780 _Geoffrey Critzer_, Jun 18 2013