This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226789 #18 Oct 22 2021 23:57:10 %S A226789 10,21,26519722651971,33388573338856,69954026995401,80863378086336 %N A226789 Triangular numbers obtained as the concatenation of n+1 and n. %C A226789 There are only six terms less than 10^20. %e A226789 26519722651971 is the concatenation of 2651972 and 2651971 and a triangular number, because 26519722651971 = 7282818*7282819/2. %t A226789 TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; t = {}; Do[s = FromDigits[Join[IntegerDigits[n+1], IntegerDigits[n]]]; If[TriangularQ[s], AppendTo[t, s]], {n, 100000}]; t (* _T. D. Noe_, Jun 18 2013 *) %o A226789 (PARI) %o A226789 concatint(a,b)=eval(concat(Str(a),Str(b))) %o A226789 istriang(x)=issquare(8*x+1) %o A226789 {for(n=1,10^7,a=concatint(n+1,n);if(istriang(a),print(a)))} %o A226789 (Python) %o A226789 from math import isqrt %o A226789 def istri(n): t = 8*n+1; return isqrt(t)**2 == t %o A226789 def afind(klimit, kstart=0): %o A226789 strk = "0" %o A226789 for k in range(kstart, klimit+1): %o A226789 strkp1 = str(k+1) %o A226789 t = int(strkp1 + strk) %o A226789 if istri(t): %o A226789 print(t, end=", ") %o A226789 strk = strkp1 %o A226789 afind(81*10**5) # _Michael S. Branicky_, Oct 21 2021 %o A226789 (Python) # alternate version %o A226789 def isconcat(n): %o A226789 if n < 10: return False %o A226789 s = str(n) %o A226789 mid = (len(s)+1)//2 %o A226789 lft, rgt = int(s[:mid]), int(s[mid:]) %o A226789 return lft - 1 == rgt %o A226789 def afind(tlimit, tstart=0): %o A226789 for t in range(tstart, tlimit+1): %o A226789 trit = t*(t+1)//2 %o A226789 if isconcat(trit): %o A226789 print(trit, end=", ") %o A226789 afind(13*10**6) # _Michael S. Branicky_, Oct 21 2021 %Y A226789 Cf. A003098, A068899, A226742, A226772, A226788. %K A226789 nonn,base,more %O A226789 1,1 %A A226789 _Antonio Roldán_, Jun 18 2013