cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226805 P_n(n+1) where P_n(x) is the polynomial of degree n-1 which satisfies P_n(i) = i^i for i = 1,...,n.

Original entry on oeis.org

1, 7, 70, 877, 13316, 237799, 4885980, 113566121, 2946476764, 84417530491, 2647176188372, 90183424037293, 3316840864313484, 130985236211745959, 5528094465439087876, 248308899812296990033, 11827417687501017074876, 595470029978391175571923
Offset: 1

Views

Author

Keywords

Examples

			P_3(x) = 18 - 27*x + 10*x^2; a(3) = P_3(3+1) = 70.
		

Crossrefs

Programs

  • Mathematica
    P[n_][x_] = Sum[a[i]*x^i, {i, 0, n - 1}];ecu[n_] := Table[P[n][i] == i^i, {i, 1, n}];PP[n_][x_] := P[n][x] /. Solve[ecu[n]][[1]];Table[PP[i][i + 1], {i, 1, 22}]
    a[n_] := InterpolatingPolynomial[Table[{i, i^i}, {i, n}], n+1]; Array[a, 20] (* Giovanni Resta, Jun 18 2013 *)
  • PARI
    a(n)=subst(polinterpolate(vector(n,i,i^i)),'x,n+1) \\ Charles R Greathouse IV, Nov 19 2013