This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226836 #5 Jul 01 2013 13:40:38 %S A226836 36,289,4624,10404,115600,248004,1083681,1281424,2232036,2509056, %T A226836 21307456,23892544,31494544,40144896,66357316,271359729,340919296, %U A226836 479785216,512026384,597215844,767068416,4831918144,5454708736,8126661904,8522982400,12273094656,16705045504 %N A226836 Squares s such that first m and last m digits of the binary representation are perfect positive squares written in binary, and m = floor(binaryLength(s)/2), where binaryLength(s) = A070939(s) is the binary length of s. %C A226836 The sequence of roots of a(n) begins: 6, 17, 68, 102, 340, 498, 1041, 1132, 1494, 1584, 4616, 4888, 5612, 6336, 8146, 16473, 18464, 21904, 22628, 24438, 27696, 69512, 73856, 90148, 92320, ... %o A226836 (C) %o A226836 #include <stdio.h> %o A226836 #include <math.h> %o A226836 typedef unsigned long long U64; %o A226836 U64 isSquare(U64 a) { %o A226836 U64 s = sqrt(a); %o A226836 return (s*s==a); %o A226836 } %o A226836 int main() { %o A226836 U64 i, j, n, sq, s, S; %o A226836 for (n = 1; n < (1ULL<<20); ++n) { %o A226836 for (i = 64, j = sq = n*n; j < (1ULL<<63); j += j) %o A226836 --i; // binary length of sq %o A226836 j = i >> 1; // Sbs or Ss, binary length of s is j %o A226836 s = sq & ((1ULL<<j)-1); %o A226836 S = sq >> (j+(i&1)); %o A226836 if (isSquare(S) && s && isSquare(s)) printf("%llu, ", sq); %o A226836 } %o A226836 return 0; %o A226836 } %Y A226836 Cf. A070939, A226736. %K A226836 nonn,base,less %O A226836 1,1 %A A226836 _Alex Ratushnyak_, Jun 19 2013