This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226857 #15 Nov 10 2014 02:25:21 %S A226857 0,1,2,3,4,5,6,8,9,10,13,15,16,21,24,26,34,39,42,55,63,68,89,102,110, %T A226857 144,165,178,233,267,288,377,432,466,610,699,754,987,1131,1220,1597, %U A226857 1830,1974,2584,2961,3194,4181,4791,5168,6765,7752,8362,10946,12543,13530 %N A226857 Numbers that are both the sum of two Fibonacci numbers and the product of two Fibonacci numbers. %C A226857 All Fibonacci numbers are in the sequence. The only prime numbers in this sequence are prime Fibonacci numbers. %H A226857 T. D. Noe, <a href="/A226857/b226857.txt">Table of n, a(n) for n = 1..1000</a> %F A226857 Conjecture: a(n) = a(n-3)+a(n-6) for n>12. - _Colin Barker_, Nov 09 2014 %F A226857 Empirical g.f.: -x^2*(x^10 +x^9 +x^8 +2*x^7 +3*x^6 +3*x^5 +3*x^4 +3*x^3 +3*x^2 +2*x +1) / (x^6 +x^3 -1). - _Colin Barker_, Nov 09 2014 %e A226857 5 + 21 = 2 * 13 = 26, therefore 26 is in the sequence. %e A226857 8 + 21 = 1 * 34 = 34, therefore 34 is in the sequence. %e A226857 5 + 34 = 3 * 13 = 39, therefore 39 is in the sequence. %t A226857 t = Fibonacci[Range[0, 25]]; t1 = Select[Union[Flatten[Table[a + b, {a, t}, {b, t}]]], # <= t[[-1]] &]; t2 = Select[Union[Flatten[Table[a*b, {a, t}, {b, t}]]], # <= t[[-1]] &]; Intersection[t1, t2] (* _T. D. Noe_, Jul 03 2013 *) %Y A226857 Cf. A059389, A049997. %K A226857 nonn,easy %O A226857 1,3 %A A226857 _Alonso del Arte_, Jun 19 2013