cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226859 Number of prime sums in the process described in A226770.

This page as a plain text file.
%I A226859 #9 Jun 25 2013 12:35:31
%S A226859 1,1,1,1,1,1,2,1,3,1,3,1,3,2,3,1,4,1,4,2,5,1,5,1,6,3,7,1,6,1,7,4,7,3,
%T A226859 8,1,9,4,9,1,9,1,9,4,10,1,9,2,10,2,11,1,11,2,13,5,14,1,13,1,12,5,12,5,
%U A226859 13,1,13,6,14,1,14,1,13,6,14,7,15,1,15,3,15
%N A226859 Number of prime sums in the process described in A226770.
%H A226859 Peter J. C. Moses, <a href="/A226859/b226859.txt">Table of n, a(n) for n = 1..2000</a>
%F A226859 a(n) = 1 iff either n = 5 or n + 1 = p or n + 1 = q^2, where p,q and q^2+q-1 are primes.
%e A226859 Let n=76. We have 77; d=7,11; 76+7=83 (prime), 76+11=87; d=3,29; 76+3=79(prime), 76+29=105; d=5,15,21,35; 76+5=81, 76+15=91, 76+21=97(prime), 76+35=111; d=9,27,13,37, 76+9=85,76+27=103(prime),76+13=89(prime), 76+37=113(prime), d=17, 76+17=93; d=31, 76+31=107(prime). Thus the set of prime sums is {83,79,97,103,89,113,107} and therefore a(76)=7.
%t A226859 Table[(div=Most[Divisors[n+1]]; Count[n+FixedPoint[Union[Flatten[AppendTo[div, Map[Most[Divisors[n+#]]&, #]]]]&, div],_?PrimeQ]),{n,50}] (* _Peter J. C. Moses_, Jun 20 2013 *)
%Y A226859 Cf. A226770, A226856, A053184.
%K A226859 nonn
%O A226859 1,7
%A A226859 _Vladimir Shevelev_, Jun 20 2013
%E A226859 More terms from _Peter J. C. Moses_, Jun 20 2013