This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226871 #19 Sep 17 2017 18:40:28 %S A226871 1,1,2,3,6,1,2,3,6,1,2,4,7,14,28,1,2,3,6,1,2,3,6,1,2,3,6,1,2,3,6,1,2, %T A226871 3,6,1,2,3,6,1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120,1,2,3,6,1,2,3, %U A226871 6,1,2,3,6,1,2,3,6,1,2,3,4,5,6,9,10,12,15,18 %N A226871 Triangle read by rows: row n gives the first q divisors d(1), d(2), ..., d(q) of A225110(n) such that Sum_{i = 1..q} 1/d(i) is an integer. %C A226871 Rows 2, 3, 5, 6, 7, ... with the divisors {1, 2, 3, 6} are identical; %C A226871 rows 4, 18, 62, 67, ... with the divisors {1, 2, 4, 7, 14, 28} are identical; %C A226871 ... %C A226871 The primitive rows are rows 1, 2, 4, 11, 16, 39, 52, 145, ... corresponding to n = 1, 6, 28, 120, 180, 496, 672, 1890, ... (see A226853). %C A226871 The irregular triangle of divisors is: %C A226871 [1] %C A226871 [1, 2, 3, 6] %C A226871 [1, 2, 3, 6] %C A226871 [1, 2, 4, 7, 14, 28] %C A226871 [1, 2, 3, 6] %C A226871 ... %H A226871 Michel Lagneau, <a href="/A226871/b226871.txt">Rows n = 1..2223 of irregular triangle, flattened</a> %e A226871 Row 3 = [1, 2, 3, 6] consists of the first 4 divisors of A225110(3) = 18; 1 + 1/2 + 1/3 + 1/6 = 2 is an integer. %p A226871 with(numtheory): print({1}):for n from 1 to 5000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from 1 to n1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) and q>1 then ii:=1: print({seq(x[i],i=1..q)}) else fi:od:od: %Y A226871 Cf. A225110, A226853. %K A226871 nonn,tabf %O A226871 1,3 %A A226871 _Michel Lagneau_, Jun 20 2013