This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226874 #40 Jan 19 2022 18:52:44 %S A226874 1,0,1,0,1,2,0,1,3,6,0,1,10,12,24,0,1,15,50,60,120,0,1,41,180,300,360, %T A226874 720,0,1,63,497,1260,2100,2520,5040,0,1,162,1484,6496,10080,16800, %U A226874 20160,40320,0,1,255,5154,20916,58464,90720,151200,181440,362880 %N A226874 Number T(n,k) of n-length words w over a k-ary alphabet {a1, a2, ..., ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows. %C A226874 T(n,k) is the sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a multiset of size k. %H A226874 Alois P. Heinz, <a href="/A226874/b226874.txt">Rows n = 0..140, flattened</a> %H A226874 Wikipedia, <a href="https://en.wikipedia.org/wiki/Iverson_bracket">Iverson bracket</a> %H A226874 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a> %H A226874 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A226874 T(n,k) = A226873(n,k) - [k>0] * A226873(n,k-1). %e A226874 T(4,2) = 10: aaab, aaba, aabb, abaa, abab, abba, baaa, baab, baba, bbaa. %e A226874 T(4,3) = 12: aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa. %e A226874 T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa. %e A226874 Triangle T(n,k) begins: %e A226874 1; %e A226874 0, 1; %e A226874 0, 1, 2; %e A226874 0, 1, 3, 6; %e A226874 0, 1, 10, 12, 24; %e A226874 0, 1, 15, 50, 60, 120; %e A226874 0, 1, 41, 180, 300, 360, 720; %e A226874 0, 1, 63, 497, 1260, 2100, 2520, 5040; %e A226874 0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320; %e A226874 ... %p A226874 b:= proc(n, i, t) option remember; %p A226874 `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) %p A226874 end: %p A226874 T:= (n, k)-> `if`(n*k=0, `if`(n=k, 1, 0), n!*b(n, 1, k)): %p A226874 seq(seq(T(n, k), k=0..n), n=0..12); %p A226874 # second Maple program: %p A226874 b:= proc(n, i) option remember; expand( %p A226874 `if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, i-1)* %p A226874 combinat[multinomial](n, n-i*j, i$j), j=0..n/i)))) %p A226874 end: %p A226874 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): %p A226874 seq(T(n), n=0..12); %t A226874 b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 13 2013, translated from first Maple *) %o A226874 (PARI) %o A226874 T(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))} %o A226874 {my(t=T(10)); for(n=1, #t, for(k=0, n-1, print1(polcoeff(t[n], k), ", ")); print)} \\ _Andrew Howroyd_, Dec 20 2017 %Y A226874 Columns k=0-10 give: A000007, A057427, A226881, A226882, A226883, A226884, A226885, A226886, A226887, A226888, A226889. %Y A226874 Main diagonal gives: A000142. %Y A226874 Row sums give: A005651. %Y A226874 T(2n,n) gives A318796. %Y A226874 Cf. A131632, A285824, A292222, A327803. %K A226874 nonn,tabl %O A226874 0,6 %A A226874 _Alois P. Heinz_, Jun 21 2013