cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226897 a(n) is the total number of parts in the set of partitions of an n X n square lattice into squares, considering only the list of parts.

This page as a plain text file.
%I A226897 #28 Feb 12 2023 13:31:16
%S A226897 1,5,16,59,156,529,1351,3988,10236,27746,66763,176783,412450
%N A226897 a(n) is the total number of parts in the set of partitions of an n X n square lattice into squares, considering only the list of parts.
%C A226897 The sequence was derived from the documents in the Links section. The documents are first specified in the Links section of A034295.
%H A226897 Jon E. Schoenfield, <a href="https://oeis.org/A034295/a034295.txt">Table of solutions for n <= 12</a>
%H A226897 Alois P. Heinz, <a href="https://oeis.org/A034295/a034295_1.txt">More ways to divide an 11 X 11 square into sub-squares</a>
%H A226897 Alois P. Heinz, <a href="https://oeis.org/A034295/a034295_2.txt">List of different ways to divide a 13 X 13 square into sub-squares</a>
%e A226897 For n = 3, the partitions are:
%e A226897 Square side 1 2 3 Total Parts
%e A226897             9 0 0     9
%e A226897             5 1 0     6
%e A226897             0 0 1     1
%e A226897 Total                16
%e A226897 So a(3) = 16.
%p A226897 b:= proc(n, l) option remember; local i, k, s, t;
%p A226897       if max(l[])>n then {} elif n=0 or l=[] then {0}
%p A226897     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
%p A226897     else for k do if l[k]=0 then break fi od; s:={};
%p A226897          for i from k to nops(l) while l[i]=0 do s:=s union
%p A226897              map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
%p A226897                  1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
%p A226897          od; s
%p A226897       fi
%p A226897     end:
%p A226897 a:= n-> add(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n):
%p A226897 seq(a(n), n=1..9);  # _Alois P. Heinz_, Jun 21 2013
%t A226897 $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]]== 0, i++, s = s ~Union~ Map[Function[{v}, v+x^(1+i-k)], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ]]]]; s]]; a[n_] := Sum[Coefficient[Sum[j, {j, b[n, Array[0&, n]]}], x, i], {i, 1, n}]; Table[a[n], {n, 1, 9}] (* _Jean-François Alcover_, May 29 2015, after _Alois P. Heinz_ *)
%Y A226897 Cf. A034295, A045846, A226554.
%K A226897 nonn,hard,more
%O A226897 1,2
%A A226897 _Christopher Hunt Gribble_, Jun 21 2013