This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226906 #24 Jan 24 2016 05:34:34 %S A226906 1,4,1,14,1,1,47,10,1,1,134,16,4,1,1,415,82,24,6,1,1,1102,165,60,16,6, %T A226906 1,1,3076,621,169,90,22,8,1,1,7986,1361,577,194,80,28,8,1,1,20930, %U A226906 4254,1464,643,294,114,35,10,1,1,50755,9494,3667,1491,858,297,148,41,10,1,1 %N A226906 Triangle read by rows: T(n,k) is the total number of parts of size k^2, 1 <= k <= n, in the set of partitions of an n X n square lattice into squares, considering only the list of parts. %C A226906 The sequence was derived from the documents in the Links section. The documents are first specified in the Links section of A034295. %C A226906 The triangle is presented below. %C A226906 \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 %C A226906 n %C A226906 1 1 %C A226906 2 4 1 %C A226906 3 14 1 1 %C A226906 4 47 10 1 1 %C A226906 5 134 16 4 1 1 %C A226906 6 415 82 24 6 1 1 %C A226906 7 1102 165 60 16 6 1 1 %C A226906 8 3076 621 169 90 22 8 1 1 %C A226906 9 7986 1361 577 194 80 28 8 1 1 %C A226906 10 20930 4254 1464 643 294 114 35 10 1 1 %C A226906 11 50755 9494 3667 1491 858 297 148 41 10 1 1 %C A226906 12 129977 27241 10474 4858 2239 1272 454 203 51 12 1 1 %C A226906 13 305449 60086 24702 11034 5918 2874 1474 592 249 58 12 1 1 %H A226906 Christopher Hunt Gribble, <a href="/A226906/b226906.txt">Rows n = 1..13, flattened</a> %H A226906 Jon E. Schoenfield, <a href="https://oeis.org/A034295/a034295.txt">Table of solutions for n <= 12</a> %H A226906 Alois P. Heinz, <a href="https://oeis.org/A034295/a034295_1.txt">More ways to divide an 11 X 11 square into sub-squares</a> %H A226906 Alois P. Heinz, <a href="https://oeis.org/A034295/a034295_2.txt">List of different ways to divide a 13 X 13 square into sub-squares</a> %F A226906 Sum_{k=1..n} T(n,k) * k^2 = A034295(n) * n^2. %e A226906 For n = 3, the partitions are: %e A226906 Square side 1 2 3 %e A226906 9 0 0 %e A226906 5 1 0 %e A226906 0 0 1 %e A226906 Total 14 1 1 %e A226906 So T(3,1) = 14, T(3,2) = 1, T(3,3) = 1. %p A226906 b:= proc(n, l) option remember; local i, k, s, t; %p A226906 if max(l[])>n then {} elif n=0 or l=[] then {0} %p A226906 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) %p A226906 else for k do if l[k]=0 then break fi od; s:={}; %p A226906 for i from k to nops(l) while l[i]=0 do s:=s union %p A226906 map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1, %p A226906 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) %p A226906 od; s %p A226906 fi %p A226906 end: %p A226906 T:= n-> seq(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n): %p A226906 seq(T(n), n=1..10); # _Alois P. Heinz_, Jun 21 2013 %t A226906 b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {0}, Min[l] > 0, t = Min[l]; b[n - t, l - t], True, For[k = 1, k <= Length[l], k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[# + x^(1 + i - k)&, b[n, Join[l[[1 ;; k - 1]], Array[1 + i - k &, i - k + 1], l[[i + 1 ;; Length[l]]]]]]]; s]]; T[n_] := Table[Coefficient[Sum[j, {j, b[n, Array[0 &, n]]}], x, i], {i, 1, n}]; Table[T[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Jan 24 2016, after _Alois P. Heinz_ *) %Y A226906 Row sums give: A226897. %Y A226906 Cf. A034295. %K A226906 nonn,hard,tabl %O A226906 1,2 %A A226906 _Christopher Hunt Gribble_, Jun 21 2013