A226911 Remainder modulo n of the sum of the letters of the English word(s) for n (A073327: a=1, ..., z=26).
0, 0, 2, 0, 2, 4, 2, 1, 6, 9, 8, 3, 8, 6, 5, 0, 7, 1, 10, 7, 15, 11, 2, 23, 24, 3, 10, 16, 4, 10, 10, 30, 24, 24, 2, 8, 17, 35, 25, 4, 36, 16, 11, 12, 36, 44, 8, 37, 28, 16, 49, 20, 16, 18, 53, 6, 17, 57, 49, 37, 9, 31, 27, 29, 9, 17, 28, 10, 1, 40, 2, 24, 20, 22, 2, 10, 21, 3
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- M. Hasler in reply to E. Angelini, English number words modulo themselves, SeqFan list, Jun 21 2013
Programs
-
Maple
f:= proc(n) local S; uses StringTools; S:= Select(IsAlpha,convert(n,english)); convert(map(`-`,convert(S,bytes),96),`+`) mod n end proc: map(f, [$1..100]); # Robert Israel, Jun 12 2019
-
Mathematica
a[n_] := Mod[Total@ Flatten[ ToCharacterCode[#] - 96 & /@ Characters@ StringDelete[ IntegerName[n], Except@ LetterCharacter]], n] (* after Michael De Vlieger in A362065 *); Array[a, 78] (* Robert G. Wilson v, Apr 22 2023 *)
-
PARI
A226911 = n->A073327(n)%n
Formula
a(n) = A073327(n) mod n.
It appears that a(n) = A073327(n) for n > 279. - Robert Israel, Jun 12 2019
Comments