This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226916 #19 Jan 09 2025 10:14:34 %S A226916 0,0,0,0,1,0,0,1,1,1,2,1,2,2,3,3,5,4,7,6,10,9,15,13,22,19,32,28,47,41, %T A226916 69,60,101,88,148,129,217,189,318,277,466,406,683,595,1001,872,1467, %U A226916 1278,2150,1873,3151,2745,4618,4023,6768,5896,9919,8641,14537,12664,21305,18560,31224,27201,45761 %N A226916 Number of (17,11)-reverse multiples with n digits. %C A226916 Comment from _Emeric Deutsch_, Aug 21 2016 (Start): %C A226916 Given an increasing sequence of positive integers S = {a0, a1, a2, ... }, let %C A226916 F(x) = x^{a0} + x^{a1} + x^{a2} + ... . %C A226916 Then the g. f. for the number of palindromic compositions of n with parts in S is (see Hoggatt and Bicknell, Fibonacci Quarterly, 13(4), 1975): %C A226916 (1 + F(x))/(1 - F(x^2)) %C A226916 Playing with this, I have found easily that %C A226916 1. number of palindromic compositions of n into {3,4,5,...} = A226916(n+4); %C A226916 2. number of palindromic compositions of n into {1,4,7,10,13,...} = A226916(n+6); %C A226916 3. number of palindromic compositions of n into {1,4} = A226517(n+10); %C A226916 4. number of palindromic compositions of n into {1,5} = A226516(n+11). %C A226916 (End) %H A226916 Vincenzo Librandi, <a href="/A226916/b226916.txt">Table of n, a(n) for n = 0..1000</a> %H A226916 V. E. Hogatt, M. Bicknell, <a href="https://fq.math.ca/13-4.html">Palindromic Compositions</a>, Fib. Quart. 13 (4) (1975) 350-356 %H A226916 N. J. A. Sloane, <a href="http://arxiv.org/abs/1307.0453">2178 And All That</a>, Fib. Quart., 52 (2014), 99-120. %H A226916 N. J. A. Sloane, <a href="/A001232/a001232.pdf">2178 And All That</a> [Local copy] %H A226916 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,0,1). %F A226916 G.f.: x^4*(1+x)*(1-x+x^3)/(1-x^2-x^6). %F A226916 a(2n) = A058278(n-1). a(2n+1)=A000930(n-3). - _R. J. Mathar_, Dec 13 2022 %t A226916 CoefficientList[Series[x^4 (1 - x^2 + x^3 + x^4) / (1 - x^2 - x^6), {x, 0, 70}], x] (* _Vincenzo Librandi_, Jul 16 2013 *) %Y A226916 Cf. A214927, A226516, A226517. %K A226916 nonn,base,easy %O A226916 0,11 %A A226916 _N. J. A. Sloane_, Jun 24 2013