cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226939 A recursive variation of the Collatz-Fibonacci sequence: a(n) = 1 + min(a(C(n)),a(C(C(n)))) where C(n) = A006370(n), the Collatz map.

This page as a plain text file.
%I A226939 #23 Sep 26 2015 13:18:56
%S A226939 1,1,4,2,3,5,9,2,10,4,8,5,5,9,9,3,7,11,11,4,4,8,8,6,12,6,56,10,10,10,
%T A226939 54,3,14,7,7,11,11,11,18,5,55,5,15,9,9,9,53,6,13,13,13,6,6,57,57,10,
%U A226939 17,10,17,10,10,54,54,4,14,14,14,8,8,8
%N A226939 A recursive variation of the Collatz-Fibonacci sequence: a(n) = 1 + min(a(C(n)),a(C(C(n)))) where C(n) = A006370(n), the Collatz map.
%C A226939 The sequence contains mysterious duplicates of terms, sometimes in groups of 2 to 4 at a time, but I haven't seen any cyclic patterns, it's all unique.
%H A226939 Charles R Greathouse IV, <a href="/A226939/b226939.txt">Table of n, a(n) for n = 1..10000</a>
%F A226939 a(n) = 1 + min(a(C(n)), a(C(C(n)))), where C(n) = A006370(n).
%e A226939 a(n) values frequently depend on both lesser and higher terms:
%e A226939 a(3)= 1+ min( a(C(3)), a(C(C(3)))) = 4
%e A226939 a(3)= 1+ min( a(10), a(5))= 1+min(4,3) = 4
%e A226939 a(10)=1+ min( a(5), a(16))= 1+min(3,3) = 4
%e A226939 a(5) =1+ min( a(16),a(8)) = 1+min(3,2) = 3
%e A226939 a(16)=1+ min( a(8), a(4)) = 1+min(2,2) = 3
%e A226939 a(8) =1+ min( a(4), a(2)) = 1+min(1,1) = 2
%e A226939 a(4) =1+ min( a(2), a(1)) = 1+min(1,1) = 2
%e A226939 a(2) =1 (starting value)
%o A226939 (PARI) C(n)=if(n%2,3*n+1,n/2)
%o A226939 A=vector(10^4);A[1]=A[2]=1;
%o A226939 a(n)=if(n<=#A && A[n], A[n], my(c=C(n),t=min(a(c), a(C(c)))+1); if(n>#A, t, A[n]=t)) \\ _Charles R Greathouse IV_, Jun 24 2013
%o A226939 (Blitz3D) function A(n)
%o A226939             if n=1 or 2
%o A226939                    return 1
%o A226939             else
%o A226939                    return 1 +lesser(A(C(n)), A(C(C(n))))
%o A226939             end if
%o A226939 end function
%o A226939 ; The Collatz Sequence generator equation
%o A226939 Function C(n)
%o A226939        If n Mod 2
%o A226939                  Return 3*n+1
%o A226939        Else
%o A226939                  Return n Shr 1
%o A226939        End If
%o A226939 End Function
%o A226939 ;; _Andres M. Torres_, Jun 26 2013
%Y A226939 Cf. A014682.
%K A226939 nonn
%O A226939 1,3
%A A226939 _Andres M. Torres_, Jun 22 2013