A226953 Leap year numbers: numbers n such that tau(phi(n)) = phi(tau(n))^2, where tau(n) is the number of divisors of n and phi(n) the Euler totient function.
1, 2, 9, 14, 15, 18, 20, 22, 46, 94, 118, 166, 214, 231, 248, 286, 308, 310, 334, 344, 350, 351, 358, 366, 372, 392, 399, 405, 406, 430, 454, 483, 490, 494, 516, 518, 522, 526, 532, 536, 568, 595, 598, 632, 638, 644, 654, 663, 666
Offset: 1
Examples
phi(666)=216, tau(216)=16, tau(666)=12, phi(12)=4, 4^2=16, therefore 666 is in the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A137815 (Doug Iannucci's "year numbers").
Programs
-
Mathematica
Select[Range[1000], DivisorSigma[0, EulerPhi[#]] == EulerPhi[DivisorSigma[0, #]]^2 &]
Comments