This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226975 #45 Feb 16 2025 08:33:20 %S A226975 5,6,5,1,5,9,1,0,3,9,9,2,4,8,5,0,2,7,2,0,7,6,9,6,0,2,7,6,0,9,8,6,3,3, %T A226975 0,7,3,2,8,8,9,9,6,2,1,6,2,1,0,9,2,0,0,9,4,8,0,2,9,4,4,8,9,4,7,9,2,5, %U A226975 5,6,4,0,9,6,4,3,7,1,1,3,4,0,9,2,6,6,4,9,9,7,7,6,6,8,1,4,4,1,0,0,6,4,6,7,7,8,8,6 %N A226975 Decimal expansion I_1(1), the modified Bessel function of the first kind. %C A226975 This is also the derivative of the zeroth modified Bessel function at 1. %D A226975 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504. %H A226975 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html">Modified Bessel Function of the First Kind</a>. %F A226975 From _Antonio GraciĆ” Llorente_, Jan 29 2024: (Start) %F A226975 I_1(1) = (1/2) * Sum_{k>=0} (2*k)/(4^k*k!^2) = (1/2) * Sum_{k>=0} (2*k)/A002454(k). %F A226975 Equals (1/2) * Sum_{k>=0} (4*k^2 + 4*k - 1) / (2*k)!!^2. %F A226975 Equals exp(-1) * Sum_{k>=0} binomial(2*k,k+1)/(2^k*k!). %F A226975 Equals (-e) * Sum_{k>=0} (-1/2)^k * binomial(2*k,k+1)/k! %F A226975 Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t))*cos(t) dt. (End) %e A226975 0.56515910399248502720769602760986330732889962162109... %t A226975 RealDigits[BesselI[1, 1], 10, 110][[1]] %o A226975 (PARI) besseli(1,1) \\ _Charles R Greathouse IV_, Feb 19 2014 %o A226975 (SageMath) %o A226975 ((1/2) * sum(1 / (4^x * factorial(x) * rising_factorial(2, x)), x, 0, oo)).n(360) %o A226975 # _Peter Luschny_, Jan 29 2024 %Y A226975 Cf. A002454, A197036. %K A226975 nonn,cons %O A226975 0,1 %A A226975 _Horst-Holger Boltz_, Jun 25 2013