This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226978 #30 Dec 15 2022 10:00:30 %S A226978 1,2,2,4,4,12,8,44,32,228,148,1632,912,16004,8420,213680,101508, %T A226978 3933380,1691008,98949060,38742844,3413919788,1213540776,161410887252, %U A226978 52106993880 %N A226978 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 1 element. %C A226978 From _Walter Trump_, Dec 15 2022: (Start) %C A226978 a(n) is the number of fully symmetric dissections of an n X n square into squares with integer sides. %C A226978 Conjecture: For n>3 the number of dissections is a multiple of 4. (End) %H A226978 Christopher Hunt Gribble, <a href="/A226978/a226978.txt">C++ program for A226978, A226979, A226980, A226981, A227004</a> %H A226978 Walter Trump, <a href="/A226978/a226978.png">Example for n=19</a> %F A226978 a(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n). %F A226978 1*a(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n). %e A226978 For n=5, there are 4 dissections where the orbits under the symmetry group of the square, D4, have 1 element. %e A226978 For n=4, 3 dissections divide the square into uniform subsquares (of sizes 1, 2 and 4 respectively), and this is the 4th: %e A226978 --------- %e A226978 | | | | | %e A226978 --------- %e A226978 | | | | %e A226978 --- --- %e A226978 | | | | %e A226978 --------- %e A226978 | | | | | %e A226978 --------- %Y A226978 Cf. A045846, A034295, A219924, A224239, A226979, A226980, A226981. %K A226978 nonn,more %O A226978 1,2 %A A226978 _Christopher Hunt Gribble_, Jun 25 2013 %E A226978 a(8)-a(12) from _Ed Wynn_, Apr 02 2014 %E A226978 a(13)-a(25) from _Walter Trump_, Dec 15 2022