A226993 Primes p such that 2p - 1 and 2p + 1 are squarefree.
2, 3, 7, 11, 17, 19, 29, 43, 47, 53, 71, 79, 83, 89, 97, 101, 107, 109, 127, 151, 173, 179, 191, 197, 199, 223, 227, 233, 241, 251, 271, 277, 281, 307, 317, 331, 349, 353, 359, 379, 389, 397, 431, 439, 443, 449, 457, 461, 467, 479, 503, 521, 523, 547, 557, 569
Offset: 1
Keywords
Examples
3 is in the sequence because 3 is prime and both 2*3 - 1 = 5 and 2*3 + 1 = 7 are squarefree.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A005117.
Programs
-
Maple
with(numtheory); P:=proc(q) local n; for n from 1 to q do if isprime(n) then if issqrfree(2*n-1) and issqrfree(2*n+1) then print(n) fi; fi; od; end: P(10^5); #Paolo P. Lava, Jun 26 2013
-
PARI
is(n)=isprime(n)&&issquarefree(2*n-1)&&issquarefree(2*n+1) \\ Charles R Greathouse IV, Jun 27 2013