A226999 Inverse Euler transform of A005169 (fountains of coins).
1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 93, 149, 248, 403, 671, 1098, 1827, 3013, 5013, 8313, 13859, 23063, 38534, 64341, 107715, 180355, 302565, 507784, 853507, 1435415, 2416941, 4072272, 6868062, 11590807, 19577555, 33088481, 55964327, 94712212
Offset: 1
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..4178
- R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Programs
-
Mathematica
max = 100; A005169 = Series[1 - Fold[Function[1 - x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]&; mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]]; EULERi[A005169 // Rest] (* Jean-François Alcover, Jan 06 2020 *)
Formula
a(n) ~ 1 / (n * r^n), where r = A347901 = 0.57614876914275660229786857371993878235472466311897446868515653431946822937499... - Vaclav Kotesovec, Oct 09 2019
Comments