cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226999 Inverse Euler transform of A005169 (fountains of coins).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 93, 149, 248, 403, 671, 1098, 1827, 3013, 5013, 8313, 13859, 23063, 38534, 64341, 107715, 180355, 302565, 507784, 853507, 1435415, 2416941, 4072272, 6868062, 11590807, 19577555, 33088481, 55964327, 94712212
Offset: 1

Views

Author

R. J. Mathar, Jun 26 2013

Keywords

Comments

If G005169(x) = Sum_{i>=0} A005169(n)*x^n is the generating function of A005169, the a(n) are defined through G005169(x) = Product_{n>=1} 1/(1-x^n)^a(n), the inverse Euler transform of A005169.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.

Crossrefs

Programs

  • Mathematica
    max = 100;
    A005169 = Series[1 - Fold[Function[1 - x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]&;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[A005169 // Rest] (* Jean-François Alcover, Jan 06 2020 *)

Formula

a(n) ~ 1 / (n * r^n), where r = A347901 = 0.57614876914275660229786857371993878235472466311897446868515653431946822937499... - Vaclav Kotesovec, Oct 09 2019