This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227005 #48 Jun 30 2023 10:26:42 %S A227005 0,1,4,20,346,6891,634172,47917598,27622729933,6998287399637 %N A227005 Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 2 elements. %H A227005 Giovanni Resta, <a href="/A227005/a227005.c.txt">Simple C program for computing a(1)-a(4)</a> %H A227005 Ed Wynn, <a href="http://arxiv.org/abs/1402.0545">Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs</a>, arXiv:1402.0545 [math.CO], 2014. %F A227005 A063524 + A227005 + A227257 + A227301 = A209077. %F A227005 1*A063524 + 2*A227005 + 4*A227257 + 8*A227301 = A003763. %F A227005 a(2n) = A237431(2n), a(2n+1) = A237431(2n+1) + A237432(n+1). - _Ed Wynn_, Feb 07 2014 %e A227005 When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice where the orbits under the symmetry group of the square have 2 elements. The 2 elements are: %e A227005 o__o__o__o o__o o__o %e A227005 | | | | | | %e A227005 o__o o__o o o__o o %e A227005 | | | | %e A227005 o__o o__o o o__o o %e A227005 | | | | | | %e A227005 o__o__o__o o__o o__o %Y A227005 Cf. A003763, A209077, A063524, A227257, A227301. %K A227005 nonn,more %O A227005 1,3 %A A227005 _Christopher Hunt Gribble_, Jul 05 2013 %E A227005 a(4) from _Giovanni Resta_, Jul 11 2013 %E A227005 a(5)-a(10) from _Ed Wynn_, Feb 05 2014