A227011
Integers m such that phi(sigma(k))/sigma(phi(k)) > phi(sigma(m))/sigma(phi(m)) for all k
1, 3, 5, 11, 13, 17, 29, 41, 181, 209, 377, 779, 3239, 4469, 5249, 15539, 43259, 58589, 119279, 169679, 174719, 461369, 692687, 955499, 1258949, 1859129, 1917299, 3925463, 7991693, 8986469, 13244069, 16732169, 30629363, 44137523, 48466987, 64018433, 68787773
Offset: 1
Keywords
Examples
5 is in the sequence because phi(sigma(5))/sigma(phi(5)) = 2/7 and for all k < 5, phi(sigma(k))/sigma(phi(k)) > 2/7.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..48 (terms < 10^10)
Programs
-
Maple
A062401 := proc(n) numtheory[phi](numtheory[sigma](n)) end proc: A062402 := proc(n) numtheory[sigma](numtheory[phi](n)) end proc: s := proc(n) A062401(n)/A062402(n) ; end proc: r := 100000000000000000000000000000 ; for n from 1 do if s(n) < r then printf("%d,\n",n) ; r := s(n) ; end if; end do:
-
PARI
f(n)=eulerphi(sigma(n=factor(n)))/sigma(eulerphi(n)) is(n)=my(t=f(n)); for(k=1,n-1,if(f(k)<=t, return(0))); 1 \\ Charles R Greathouse IV, Nov 27 2013
Extensions
a(33)-a(37) from Donovan Johnson, Oct 11 2013
Comments