A227021 Number of n X 2 (0,1,2) arrays of permanents of 2 X 2 subblocks of some (n+1) X 3 binary array with rows and columns of the latter in lexicographically nondecreasing order.
7, 26, 72, 171, 368, 729, 1343, 2325, 3819, 6001, 9082, 13311, 18978, 26417, 36009, 48185, 63429, 82281, 105340, 133267, 166788, 206697, 253859, 309213, 373775, 448641, 534990, 634087, 747286, 876033, 1021869, 1186433, 1371465, 1578809
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..0....0..1....1..2....0..1....0..0....0..1....0..0....0..0....1..1 ..0..1....0..1....0..0....2..2....0..0....0..0....1..0....0..2....1..1....1..1 ..2..1....0..0....0..0....2..2....1..0....1..2....1..0....0..2....0..0....2..1 ..2..2....1..1....1..0....2..2....0..0....2..2....2..0....0..2....0..0....2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A227025.
Formula
Empirical: a(n) = (1/40)*n^5 + (1/3)*n^4 - (1/8)*n^3 + (5/3)*n^2 + (141/10)*n - 15 for n>2.
Conjectures from Colin Barker, Sep 06 2018: (Start)
G.f.: x*(7 - 16*x + 21*x^2 - 11*x^3 + 7*x^4 - 6*x^5 + x^7) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)