A227025 T(n,k)=Number of nXk (0,1,2) arrays of permanents of 2X2 subblocks of some (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order.
3, 7, 7, 12, 26, 12, 18, 72, 72, 18, 25, 171, 335, 171, 25, 33, 368, 1366, 1366, 368, 33, 42, 729, 4948, 10050, 4948, 729, 42, 52, 1343, 16115, 65317, 65317, 16115, 1343, 52, 63, 2325, 47659, 375270, 786154, 375270, 47659, 2325, 63, 75, 3819, 129463, 1924848
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..2....0..0..1..1....1..0..0..0....0..0..1..1....0..0..1..0 ..0..0..1..1....1..0..1..1....0..0..0..0....0..2..1..1....0..1..0..0 ..1..0..1..1....1..0..1..1....1..1..0..1....0..2..2..1....2..0..0..1 ..0..0..1..0....2..2..2..1....2..1..0..1....1..2..1..0....2..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..112
Crossrefs
Column 1 is A027379
Formula
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (5/2)*n
k=2: [polynomial of degree 5] for n>2
k=3: [polynomial of degree 11] for n>6
Comments