cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227034 Composite numbers such that product_{i=1..k} (p_i/(p_i-1)) / sum_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of n (with multiplicity).

Original entry on oeis.org

4, 16, 72, 132, 256, 800, 1232, 2208, 2960, 5184, 5376, 11904, 19200, 23760, 39040, 41472, 65536, 72000, 76032, 76800, 84816, 203280, 259200, 288768, 332928, 345600, 373248, 383040, 416000, 614400, 628992, 640000, 663552, 691200, 1228800, 1996800, 2013312
Offset: 1

Views

Author

Paolo P. Lava, Jul 03 2013

Keywords

Comments

All terms are even numbers.

Examples

			Prime factors of 1232 are 2^4, 7, 11 and ((2/(2-1))^4*7/(7-1)*11/(11-1)) / (4*2/(2-1)+7/(7-1)+11/(11-1)) = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA226365:=proc(q) local a, d, n, p;
    for n from 2 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p)/add((op(1,d)/(op(1,d)-1))*op(2,d),d=p);
    if type(a,integer) then print(n); fi; fi;
    od; end: ListA226365(10^10);