This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227038 #39 Feb 16 2025 08:33:20 %S A227038 1,1,1,3,4,7,13,19,30,44,71,98,147,205,294,412,575,783,1077,1456,1957, %T A227038 2634,3492,4627,6082,7980,10374,13498,17430,22451,28767,36806,46803, %U A227038 59467,75172,94839,119285,149599,187031,233355,290340,360327,446222,551251,679524,835964,1026210 %N A227038 Number of (weakly) unimodal compositions of n where all parts 1, 2, ..., m appear where m is the largest part. %H A227038 Joerg Arndt and Alois P. Heinz, <a href="/A227038/b227038.txt">Table of n, a(n) for n = 0..10000</a> %H A227038 Wikipedia, <a href="https://en.wikipedia.org/wiki/Composition_(combinatorics)">Composition (combinatorics)</a> %H A227038 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %H A227038 Wikipedia, <a href="https://en.wikipedia.org/wiki/Unimodality">Unimodality</a> %F A227038 a(n) ~ c * exp(Pi*sqrt(r*n)) / n, where r = 0.9409240878664458093345791978063..., c = 0.05518035191234679423222212249... - _Vaclav Kotesovec_, Mar 04 2020 %F A227038 a(n) + A332743(n) = 2^(n - 1). - _Gus Wiseman_, Mar 05 2020 %e A227038 There are a(8) = 30 such compositions of 8: %e A227038 01: [ 1 1 1 1 1 1 1 1 ] %e A227038 02: [ 1 1 1 1 1 1 2 ] %e A227038 03: [ 1 1 1 1 1 2 1 ] %e A227038 04: [ 1 1 1 1 2 1 1 ] %e A227038 05: [ 1 1 1 1 2 2 ] %e A227038 06: [ 1 1 1 2 1 1 1 ] %e A227038 07: [ 1 1 1 2 2 1 ] %e A227038 08: [ 1 1 1 2 3 ] %e A227038 09: [ 1 1 1 3 2 ] %e A227038 10: [ 1 1 2 1 1 1 1 ] %e A227038 11: [ 1 1 2 2 1 1 ] %e A227038 12: [ 1 1 2 2 2 ] %e A227038 13: [ 1 1 2 3 1 ] %e A227038 14: [ 1 1 3 2 1 ] %e A227038 15: [ 1 2 1 1 1 1 1 ] %e A227038 16: [ 1 2 2 1 1 1 ] %e A227038 17: [ 1 2 2 2 1 ] %e A227038 18: [ 1 2 2 3 ] %e A227038 19: [ 1 2 3 1 1 ] %e A227038 20: [ 1 2 3 2 ] %e A227038 21: [ 1 3 2 1 1 ] %e A227038 22: [ 1 3 2 2 ] %e A227038 23: [ 2 1 1 1 1 1 1 ] %e A227038 24: [ 2 2 1 1 1 1 ] %e A227038 25: [ 2 2 2 1 1 ] %e A227038 26: [ 2 2 3 1 ] %e A227038 27: [ 2 3 1 1 1 ] %e A227038 28: [ 2 3 2 1 ] %e A227038 29: [ 3 2 1 1 1 ] %e A227038 30: [ 3 2 2 1 ] %e A227038 From _Gus Wiseman_, Mar 05 2020: (Start) %e A227038 The a(1) = 1 through a(6) = 13 compositions: %e A227038 (1) (11) (12) (112) (122) (123) %e A227038 (21) (121) (221) (132) %e A227038 (111) (211) (1112) (231) %e A227038 (1111) (1121) (321) %e A227038 (1211) (1122) %e A227038 (2111) (1221) %e A227038 (11111) (2211) %e A227038 (11112) %e A227038 (11121) %e A227038 (11211) %e A227038 (12111) %e A227038 (21111) %e A227038 (111111) %e A227038 (End) %p A227038 b:= proc(n,i) option remember; %p A227038 `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+ %p A227038 add(b(n-i*j, i+1)*(j+1), j=1..n/i)) %p A227038 end: %p A227038 a:= n-> `if`(n=0, 1, b(n, 1)): %p A227038 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 26 2014 %t A227038 b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i] == 0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 1, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Apr 09 2015, after _Alois P. Heinz_ *) %t A227038 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A227038 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A227038 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&unimodQ[#]&]],{n,0,10}] (* _Gus Wiseman_, Mar 05 2020 *) %Y A227038 Cf. A001523 (unimodal compositions), A001522 (smooth unimodal compositions with first and last part 1), A001524 (unimodal compositions such that each up-step is by at most 1 and first part is 1). %Y A227038 Organizing by length rather than sum gives A007052. %Y A227038 The complement is counted by A332743. %Y A227038 The case of run-lengths of partitions is A332577, with complement A332579. %Y A227038 Compositions covering an initial interval are A107429. %Y A227038 Non-unimodal compositions are A115981. %Y A227038 Cf. A000009, A055932, A072704, A317086, A329766, A332578, A332669, A332670. %K A227038 nonn %O A227038 0,4 %A A227038 _Joerg Arndt_, Jun 28 2013