cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227041 Triangle of numerators of harmonic mean of n and m, 1 <= m <= n.

This page as a plain text file.
%I A227041 #12 Feb 16 2025 08:33:20
%S A227041 1,4,2,3,12,3,8,8,24,4,5,20,15,40,5,12,3,4,24,60,6,7,28,21,56,35,84,7,
%T A227041 16,16,48,16,80,48,112,8,9,36,9,72,45,36,63,144,9,20,10,60,40,20,15,
%U A227041 140,80,180,10,11,44,33,88,55,132,77,176,99,220,11
%N A227041 Triangle of numerators of harmonic mean of n and m, 1 <= m <= n.
%C A227041 The harmonic mean H(n,m) is the reciprocal of the arithmetic mean of the reciprocals of n and m: H(n,m) = 1/((1/2)*(1/n +1/m)) = 2*n*m/(n+m). 1/H(n,m) marks the middle of the interval [1/n, 1/m] if m < n: 1/H(n,m) = 1/n + (1/2)*(1/m - 1/n). For m < n one has m < H(n,m) < n, and H(n,n) = n.
%C A227041   H(n,m) = H(m,n).
%C A227041 For the rationals H(n,m)/2 see A221918(n,m)/A221919(n,m). See the comments under A221918.
%H A227041 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicMean.html">Harmonic Mean</a>.
%F A227041 a(n,m) = numerator(2*n*m/(n+m)), 1 <= m <= n.
%F A227041 a(n,m) = 2*n*m/gcd(n+m,2*n*m) = 2*n*m/gcd(n+m,2*m^2), n >= 0.
%e A227041 The triangle of numerators of H(n,m), called a(n,m) begins:
%e A227041 n\m  1   2   3   4   5    6    7    8    9   10  11 ...
%e A227041 1:   1
%e A227041 2:   4   2
%e A227041 3:   3  12   3
%e A227041 4:   8   8  24   4
%e A227041 5:   5  20  15  40   5
%e A227041 6:  12   3   4  24  60    6
%e A227041 7:   7  28  21  56  35   84    7
%e A227041 8:  16  16  48  16  80   48  112    8
%e A227041 9:   9  36   9  72  45   36   63  144    9
%e A227041 10: 20  10  60  40  20   15  140   80  180   10
%e A227041 11: 11  44  33  88  55  132   77  176   99  220  11
%e A227041 ...
%e A227041 a(4,3) = numerator(24/7) = 24 = 24/gcd(7,18).
%e A227041 The triangle of the rationals H(n,m) begins:
%e A227041 n\m    1      2     3     4      5      6      7      8   9
%e A227041 1:   1/1
%e A227041 2:   4/3    2/1
%e A227041 3:   3/2   12/5   3/1
%e A227041 4:   8/5    8/3  24/7   4/1
%e A227041 5:   5/3   20/7  15/4  40/9    5/1
%e A227041 6:  12/7    3/1   4/1  24/5  60/11    6/1
%e A227041 7:   7/4   28/9  21/5 56/11   35/6  84/13    7/1
%e A227041 8:  16/9   16/5 48/11  16/3  80/13   48/7 112/15    8/1
%e A227041 9:   9/5  36/11   9/2 72/13   45/7   36/5   63/8 144/17 9/1
%e A227041 ...
%e A227041 H(4,3) = 2*4*3/(4 + 3) = 2*4*3/7 = 24/7.
%Y A227041 Cf. A227042, A022998 (m=1), A227043 (m=2), A227106 (m=3), A227107 (m=4), A221918/A221919.
%K A227041 nonn,easy,frac,tabl
%O A227041 1,2
%A A227041 _Wolfdieter Lang_, Jul 01 2013