cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227043 Numerator of harmonic mean H(n,2), n>= 0.

Original entry on oeis.org

0, 4, 2, 12, 8, 20, 3, 28, 16, 36, 10, 44, 24, 52, 7, 60, 32, 68, 18, 76, 40, 84, 11, 92, 48, 100, 26, 108, 56, 116, 15, 124, 64, 132, 34, 140, 72, 148, 19, 156, 80, 164, 42, 172, 88, 180, 23, 188, 96, 196, 50, 204, 104, 212, 27, 220, 112, 228, 58, 236, 120
Offset: 0

Views

Author

Wolfdieter Lang, Jul 01 2013

Keywords

Comments

a(n) = numerator(H(n,2)) = numerator(4*n/(n+2)), n>=0, with H(n,2) the harmonic mean of n and 2.
The corresponding denominator is given in A000265(n+2), n>= 0.
a(n+2), n>=0, is the second column (m=2) of the triangle A227041.

Examples

			The rationals H(n,2) begin:
0, 4/3, 2, 12/5, 8/3, 20/7, 3, 28/9, 16/5, 36/11, 10/3, 44/13, 24/7, 52/15, 7/2, 60/17, ...
		

Crossrefs

Cf. A227041(n+2,2), A000265(n+2) (denominator), n >= 0.

Formula

a(n) = numerator(4*n/(n+2)), n >= 0.
a(n) = 4*n/gcd(n+2,4*n) = 4*n/gcd(n+2,8), n >= 0.