This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227044 #29 Nov 27 2022 02:41:42 %S A227044 1,6,150,9366,1091670,204495126,56183135190,21282685940886, %T A227044 10631309363962710,6771069326513690646,5355375592488768406230, %U A227044 5149688839606380769088406,5916558242148290945301297750,8004451519688336984972255078166,12595124129900132067036747870669270 %N A227044 a(n) = Sum_{k>=1} k^(2*n)/(2^k). %H A227044 Vincenzo Librandi, <a href="/A227044/b227044.txt">Table of n, a(n) for n = 0..100</a> %F A227044 a(n) ~ (2n)!/(log(2))^(2*n+1). %F A227044 a(n) = Sum_{k=0..2*n} (-2)^k * k! * Stirling2(2*n, k). - _Paul D. Hanna_, Apr 15 2018 %F A227044 a(n) = A000629(2*n). - _Christian Krause_, Nov 22 2022 %t A227044 Table[Sum[k^(2*n)/(2^k), {k, 1, Infinity}], {n, 0, 20}] %t A227044 a[n_] := PolyLog[-2 n, 1/2]; a[0] = 1; Array[a, 15, 0] (* _Peter Luschny_, Sep 06 2020 *) %o A227044 (PARI) {a(n) = sum(k=0, 2*n, (-2)^k * k! * stirling(2*n, k,2) )} %o A227044 for(n=0, 20, print1(a(n), ", ")) %Y A227044 Bisection of A000629. %Y A227044 Cf. A080163. %K A227044 nonn %O A227044 0,2 %A A227044 _Vaclav Kotesovec_, Jun 29 2013