This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227074 #10 May 11 2025 23:47:51 %S A227074 1,4,4,16,8,16,64,24,24,64,256,88,48,88,256,1024,344,136,136,344,1024, %T A227074 4096,1368,480,272,480,1368,4096,16384,5464,1848,752,752,1848,5464, %U A227074 16384,65536,21848,7312,2600,1504,2600,7312,21848,65536,262144,87384,29160 %N A227074 A triangle formed like Pascal's triangle, but with 4^n on the borders instead of 1. %C A227074 All rows except the zeroth are divisible by 4. Is there a closed-form formula for these numbers, like for binomial coefficients? %H A227074 T. D. Noe, <a href="/A227074/b227074.txt">Rows n = 0..50 of triangle, flattened</a> %e A227074 Triangle begins: %e A227074 1, %e A227074 4, 4, %e A227074 16, 8, 16, %e A227074 64, 24, 24, 64, %e A227074 256, 88, 48, 88, 256, %e A227074 1024, 344, 136, 136, 344, 1024, %e A227074 4096, 1368, 480, 272, 480, 1368, 4096, %e A227074 16384, 5464, 1848, 752, 752, 1848, 5464, 16384, %e A227074 65536, 21848, 7312, 2600, 1504, 2600, 7312, 21848, 65536 %t A227074 t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 4^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t] %Y A227074 Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders). %Y A227074 Cf. A051601 (n on the borders), A137688 (2^n on borders). %Y A227074 Cf. A165665 (row sums: 3*4^n - 2*2^n), A227075 (3^n edges), A227076 (5^n edges). %K A227074 nonn,tabl %O A227074 0,2 %A A227074 _T. D. Noe_, Aug 06 2013