This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227076 #18 Jan 11 2025 03:54:16 %S A227076 1,5,5,25,10,25,125,35,35,125,625,160,70,160,625,3125,785,230,230,785, %T A227076 3125,15625,3910,1015,460,1015,3910,15625,78125,19535,4925,1475,1475, %U A227076 4925,19535,78125,390625,97660,24460,6400,2950,6400,24460,97660,390625 %N A227076 A triangle formed like Pascal's triangle, but with 5^n on the borders instead of 1. %C A227076 All rows except the zeroth are divisible by 5. Is there a closed-form formula for these numbers, as there is for binomial coefficients? %H A227076 T. D. Noe, <a href="/A227076/b227076.txt">Rows n = 0..50 of triangle, flattened</a> %F A227076 From _R. J. Mathar_, Aug 09 2013: (Start) %F A227076 T(n,0) = 5^n. %F A227076 T(n,1) = 5*A047850(n-1). %F A227076 T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16). %F A227076 T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). (End) %F A227076 Sum_{k=0..n} (-1)^k*T(n, k) = 20*(1+(-1)^n)*A009969(floor((n-1)/2)) - (3/5)*[n = 0]. - _G. C. Greubel_, Jan 10 2025 %e A227076 Triangle begins as: %e A227076 1; %e A227076 5, 5; %e A227076 25, 10, 25; %e A227076 125, 35, 35, 125; %e A227076 625, 160, 70, 160, 625; %e A227076 3125, 785, 230, 230, 785, 3125; %e A227076 15625, 3910, 1015, 460, 1015, 3910, 15625; %e A227076 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125; %e A227076 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625; %p A227076 A227076 := proc(n,k) %p A227076 if k = 0 or k = n then %p A227076 5^n ; %p A227076 elif k < 0 or k > n then %p A227076 0; %p A227076 else %p A227076 procname(n-1,k)+procname(n-1,k-1) ; %p A227076 end if; %p A227076 end proc: # _R. J. Mathar_, Aug 09 2013 %t A227076 t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t] %o A227076 (Magma) %o A227076 function T(n,k) // T = A227076 %o A227076 if k eq 0 or k eq n then return 5^n; %o A227076 else return T(n-1,k) + T(n-1,k-1); %o A227076 end if; %o A227076 end function; %o A227076 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 10 2025 %o A227076 (Python) %o A227076 from sage.all import * %o A227076 @CachedFunction %o A227076 def T(n,k): # T = A227076 %o A227076 if k==0 or k==n: return pow(5,n) %o A227076 else: return T(n-1,k) + T(n-1,k-1) %o A227076 print(flatten([[T(n,k) for k in range(n+1)] for n in range(13)])) # _G. C. Greubel_, Jan 10 2025 %Y A227076 Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders). %Y A227076 Cf. A051601 (n on the borders), A137688 (2^n on borders). %Y A227076 Cf. A083585 (row sums: (8*5^n - 5*2^n)/3), A227074 (4^n edges), A227075 (3^n edges). %Y A227076 Cf. A000351. %K A227076 nonn,tabl %O A227076 0,2 %A A227076 _T. D. Noe_, Aug 06 2013