cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227080 Numbers whose base-6 sum of digits is 6.

This page as a plain text file.
%I A227080 #26 Jul 10 2022 11:36:31
%S A227080 11,16,21,26,31,41,46,51,56,61,66,76,81,86,91,96,111,116,121,126,146,
%T A227080 151,156,181,186,221,226,231,236,241,246,256,261,266,271,276,291,296,
%U A227080 301,306,326,331,336,361,366,396,436,441,446,451,456,471,476,481,486
%N A227080 Numbers whose base-6 sum of digits is 6.
%C A227080 Subsequence of A016861. - _Michel Marcus_, Sep 03 2013
%C A227080 In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - _M. F. Hasler_, Dec 23 2016
%H A227080 Michael S. Branicky, <a href="/A227080/b227080.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%e A227080 The 6-ary expansion of 11 is (1,5), which has sum of digits 6.
%e A227080 The 6-ary expansion of 46 is (1,1,4), which has sum of digits 6.
%e A227080 9 is not on the list since the 6-ary expansion of 10 is (1,3), which has sum of digits 4 not 6.
%t A227080 Select[Range[500],Total[IntegerDigits[#,6]]==6&] (* _Harvey P. Dale_, Nov 25 2016 *)
%o A227080 (Sage) [i for i in [0..1000] if sum(Integer(i).digits(base=6))==6]
%o A227080 (PARI) select( is(n)=sumdigits(n,6)==6, [1..999]) \\ _M. F. Hasler_, Dec 23 2016
%o A227080 (Python) # see A052224 for a faster version if going to high numbers
%o A227080 from sympy.ntheory import digits
%o A227080 def ok(n): return sum(digits(n, 6)[1:]) == 6
%o A227080 print([k for k in range(487) if ok(k)]) # _Michael S. Branicky_, Nov 16 2021
%o A227080 (Python)
%o A227080 agen = A226636gen(sod=6, base=6) # generator of terms using code in A226636
%o A227080 print([next(agen) for n in range(1, 56)]) # _Michael S. Branicky_, Jul 10 2022
%Y A227080 Cf. A018900, A187813.
%Y A227080 Cf. A226636 (b = 3), A226639 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10).
%K A227080 nonn,base
%O A227080 1,1
%A A227080 _Tom Edgar_, Sep 01 2013