This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227081 #20 Sep 08 2022 08:46:05 %S A227081 1,2,8,40,212,1152,6360,35520,200132,1135456,6478088,37128896, %T A227081 213617704,1233014720,7136819376,41408161920,240758343684, %U A227081 1402436532576,8182797500328,47814708577728,279768031296312,1638915078384960,9611453035886160 %N A227081 Row sums of A124576. %C A227081 The offset is chosen following the Deleham offset in A124576, not according to the less systematic offset in the definition. %H A227081 Vincenzo Librandi, <a href="/A227081/b227081.txt">Table of n, a(n) for n = 0..200</a> %H A227081 Isaac DeJager, Madeleine Naquin, Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019. %F A227081 Conjecture: 3*n*a(n) +2*(-13*n+9)*a(n-1) +4*(13*n-21)*a(n-2) +24*(-n+2)*a(n-3)=0. %F A227081 a(n) ~ 2^(n-3/2)*3^(n+1/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Jul 06 2013 %F A227081 G.f.: 1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1))). - _Vaclav Kotesovec_, Jul 06 2013 %p A227081 AA := proc(n,k,x,y) %p A227081 option remember; %p A227081 if k <0 or k > n then %p A227081 0 ; %p A227081 elif n = 0 then %p A227081 1; %p A227081 elif k = 0 then %p A227081 x*procname(n-1,k,x,y)+procname(n-1,1,x,y) ; %p A227081 else %p A227081 procname(n-1,k-1,x,y)+y*procname(n-1,k,x,y)+procname(n-1,k+1,x,y) ; %p A227081 end if; %p A227081 end proc: %p A227081 seq(add( AA(n,k,1,4),k=0..n),n=0..30) ; %t A227081 CoefficientList[Series[1/(6*x-1+2*Sqrt[(2*x-1)*(6*x-1)]), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Jul 06 2013 *) %o A227081 (PARI) x='x+O('x^30); Vec(1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))) \\ _G. C. Greubel_, Nov 19 2018 %o A227081 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/(6*x -1 +2*Sqrt((2*x-1)*(6*x-1))) )); // _G. C. Greubel_, Nov 19 2018 %o A227081 (Sage) s= (1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))).series(x,30); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 19 2018 %K A227081 nonn %O A227081 0,2 %A A227081 _R. J. Mathar_, Jun 30 2013