This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227113 #11 Aug 20 2017 23:19:31 %S A227113 1,2,4,3,6,5,10,7,14,8,12,9,15,11,22,13,26,16,18,17,34,19,38,20,24,21, %T A227113 27,23,46,25,30,28,32,29,58,31,62,33,36,35,40,37,74,39,42,41,82,43,86, %U A227113 44,48,45,50,47,94,49,56,51,54,52,60,53,106,55,65,57,63 %N A227113 Lexicographically earliest permutation of the natural numbers such that all pairs of even- and odd-indexed terms have a common divisor > 1. %C A227113 a(2*n) = smallest number not occurring earlier; %C A227113 a(2*n+1) = smallest number having with a(2*n) a common divisor greater than 1 and not occurring earlier; %C A227113 A227288(n) = gcd(a(n), a(n+1)). %H A227113 Reinhard Zumkeller, <a href="/A227113/b227113.txt">Table of n, a(n) for n = 1..10000</a> %H A227113 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A227113 . n | a(2n) a(2n+1) | GCD | not occurring after step n %e A227113 . ---+---------------+-----+------------------------------------------- %e A227113 . 0 | _ 1 | _ | {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,..} %e A227113 . 1 | 2 4 | 2 | {3,5,6,7,8,9,10,11,12,13,14,15,16,17,..} %e A227113 . 2 | 3 6 | 3 | {5,7,8,9,10,11,12,13,14,15,16,17,18,19,..} %e A227113 . 3 | 5 10 | 5 | {7,8,9,11,12,13,14,15,16,17,18,19,20,..} %e A227113 . 4 | 7 14 | 7 | {8,9,11,12,13,15,16,17,18,19,20,21,22,..} %e A227113 . 5 | 8 12 | 4 | {9,11,13,15,16,17,18,19,20,21,22,23,24..} %e A227113 . 6 | 9 15 | 3 | {11,13,16,17,18,19,20,21,22,23,24,25,..} %e A227113 . 7 | 11 22 | 11 | {13,16,17,18,19,20,21,23,24,25,26,27,..} %e A227113 . 8 | 13 26 | 11 | {16,17,18,19,20,21,23,24,25,27,28,29,..} %e A227113 . 9 | 16 18 | 2 | {17,19,20,21,23,24,25,27,28,29,30,31,..} . %o A227113 (Haskell) %o A227113 import Data.List (delete) %o A227113 a227113 n = a227113_list !! (n-1) %o A227113 a227113_list = 1 : f [2..] where %o A227113 f (x:xs) = x : y : f (delete y xs) %o A227113 where y : _ = filter ((> 1) . (gcd x)) xs %Y A227113 Cf. A227114 (inverse). %Y A227113 Cf. A101369, A184992. %K A227113 nonn %O A227113 1,2 %A A227113 _Reinhard Zumkeller_, Jul 01 2013 %E A227113 Thanks to _Zak Seidov_ (who suggested more elaboration) from _Reinhard Zumkeller_, Jul 05 2013