This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227115 #25 Nov 14 2024 10:07:59 %S A227115 27,10077696,128,32768,8,27,1000,1728,5088448,690807104,27,32,512, %T A227115 2048,512,6859,4913,243,405224,125,3125,2744,98611128,27000,314432, %U A227115 216,1728,1889568,243,2744,512,4913000 %N A227115 Powers but not squares which are sum of consecutive composites less than 10^7 ordered according to the proximity of the first composite of the sum to the first composite: 4. %C A227115 There are other informative data for each term of the sequence. They are (b,l,k) where b is the base to an odd power, l is the number of consecutive composites added, and k indicates the k-th composite c(k) from where the sums begin: (3,4,1), (6,4151,1), (2,10,2), (2,222,2), (2,1,3), (3,3,3), (10,30,7), (12,42,7), (172,2931,7), (884,35029,9), (3,1,17), (2,1,20), (2,13,20), (2,36,22), (2,12,23), (19,79,24), (17,59,31), (3,4,41), (74,772,42), (5,2,43), (5,37,43), (14,33,44), (462,13093,46), (30,162,47), (68,668,48), (6,3,50), (12,20,53), (18,1723,56), (3,3,57), (14,28,58), (2,6,59), (170,2827,60). %e A227115 We denote the n-th composite as c(n). Some of the odd powers are the sum of consecutive composites in several ways: 27 = 3^3 = c(1)+c(2)+c(3)+c(4) = c(3)+c(4)+c(5) = c(17) = 4 + 6 + 8 + 9 = 8 + 9 + 10. 243 = 3^5 = c(189) = c(90)+c(91) = c(57)+c(59)+c(59) = c(41)+c(42)+c(43)+c(44) = 121 + 122 = 80 + 81 + 82 = 58 + 60 + 62 + 63. 1000 = 10^3 is sum of 30 consecutive composites beginning with c(7) = 14. 1728 = 12^3 = Ramanujan taxicab minus 1 is sum of 42 consecutive composites beginning with c(7) = 14 and of 20 consecutive composites beginning with c(53) = 75. %o A227115 (PARI) n1=10^7;v=vector(n1);i=0;for(a=2,n1,if(isprime(a),next,i++;v[i]=a));for(b=1,60,k=0;for(j=b,i,k=k+v[j];if(ispower(k,,&n)&ispower(k)%2==1,print1([k,n,ispower(k),j-b+1,b]," ")))) %Y A227115 Cf. A141092, A227249, A227319. %K A227115 nonn,less %O A227115 1,1 %A A227115 _Robin Garcia_, Jul 04 2013