This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227127 #16 Jul 09 2013 06:59:28 %S A227127 1,1,2,8,20,12,28,16,36,60,22,72,52,28,60,96,102,36,114,80,42,132,92, %T A227127 144,200,104,54,112,58,120,434,128,198,68,350,72,222,228,156,240,246, %U A227127 84,430,88,180,92,564,576,196,100,204,312,106,540,330,336,342,116,354,240,122 %N A227127 The Akiyama-Tanigawa algorithm applied to 1/(1,2,3,5,... old prime numbers). Reduced numerators of the second row. %C A227127 1/A008578(n) and successive rows: %C A227127 1, 1/2, 1/3, 1/5, 1/7, %C A227127 1/2, 1/3, 2/5, 8/35, = c(n) = a(n)/b(n) %C A227127 1/6, -2/15, 18/35, %C A227127 3/10, -136/105, %C A227127 67/42 %C A227127 b(n) is essentially A006094. See A209329. %C A227127 a(n) yields to a permutation of A008578 (via 1, 1, 2, 8, 12, 16, 20, 22, ...): 1, 2, 3, 5, 11, 17, 7, 29,... . %F A227127 a(n) = (n+1)*A001223(n-1), for n>=3. %e A227127 a(n) is the numerators of c(n): c(0) = 1-1/2 = 1/2, c(1) = 2*(1/2-1/3) = 1/3, c(2) = 3*(1/3-1/5) = 2/5, c(3) = 4*(1/5-1/7)=8/35. %e A227127 a(3) = 4*2 = 8, a(4) = 5*4 = 20. %t A227127 a[0, 0] = 1; a[0, m_ /; m > 0] := 1/Prime[m]; a[n_, m_] := a[n, m] = (m+1)*(a[n-1, m ] - a[n-1, m+1]); Table[a[1, m] // Numerator, {m, 0, 60}] (* _Jean-François Alcover_, Jul 04 2013 *) %Y A227127 Cf. A002110, A006954. %K A227127 nonn,frac %O A227127 0,3 %A A227127 _Paul Curtz_, Jul 02 2013