A227128 The twisted Euler phi-function for the non-principal Dirichlet character mod 3.
1, 3, 3, 6, 6, 9, 6, 12, 9, 18, 12, 18, 12, 18, 18, 24, 18, 27, 18, 36, 18, 36, 24, 36, 30, 36, 27, 36, 30, 54, 30, 48, 36, 54, 36, 54, 36, 54, 36, 72, 42, 54, 42, 72, 54, 72, 48, 72, 42, 90, 54, 72, 54, 81, 72, 72, 54, 90, 60, 108, 60, 90, 54, 96
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Olivier Bordellès and Benoit Cloitre, An alternating sum involving the reciprocal of certain multiplicative functions, J. Int. Seq. 16 (2013), Article 13.6.3.
- Jerzy Kaczorowski and Kazimierz Wiertelak, On the sum of the twisted Euler function, Int. J. Numb. Theory 8 (7) (2012), 1741-1761.
Crossrefs
Programs
-
Maple
chi := proc(n) op(1+(n mod 3),[0,1,-1]) ; end proc: A227128 := proc(n) local a,p ; a := n ; for p in numtheory[factorset](n) do a := a*(1-chi(p)/p) ; end do: a ; end proc:
-
Mathematica
f[p_, e_] := If[Mod[p, 3] == 2, p + 1, p - 1]*p^(e - 1); f[3, e_] := 3^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], f[i, 1]^(f[i,2] - 1) * (f[i,1] + (-1)^(f[i,1]%3))))}; \\ Amiram Eldar, Oct 13 2022
Formula
Multiplicative with a(3^e) = 3^e, a(p^e) = p^(e-1)*(p-1) if p == 1 (mod 3) and a(p^e) = p^(e-1)*(p+1) if p == 2 (mod 3). - R. J. Mathar, Jul 10 2013
From Amiram Eldar, Oct 13 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/(2 * A086724) = 0.639957... . (End)
Comments