cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227134 Partitions with parts repeated at most twice and repetition only allowed if first part has an odd index (first index = 1).

This page as a plain text file.
%I A227134 #48 Feb 23 2025 07:04:59
%S A227134 1,1,2,2,4,4,7,8,11,14,19,22,30,36,46,55,70,83,104,123,151,179,218,
%T A227134 256,309,363,433,507,602,701,828,961,1127,1306,1525,1759,2046,2355,
%U A227134 2725,3129,3609,4131,4750,5424,6214,7081,8090,9195,10478,11886,13506,15290,17335,19583,22154,24981,28197,31741,35757,40176,45176
%N A227134 Partitions with parts repeated at most twice and repetition only allowed if first part has an odd index (first index = 1).
%H A227134 Alois P. Heinz, <a href="/A227134/b227134.txt">Table of n, a(n) for n = 0..10000</a>
%F A227134 Conjecture: A227134(n) + A227135(n) = A182372(n) for n >= 0, see comment in A182372.
%F A227134 G.f.: 1/(1-x) + Sum_{n>=2} x^A002620(n+1) / Product_{k=1..n} (1-x^k), where A002620(n) = floor(n/2)*ceiling(n/2) forms the quarter-squares. - _Paul D. Hanna_, Jul 06 2013
%F A227134 a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = 1 / (2^(1/4)*sqrt(5*(1 + sqrt(5)))) = 0.2090492823352... - _Vaclav Kotesovec_, May 28 2018, updated Mar 06 2020
%e A227134 G.f.: 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 8*x^7 + 11*x^8 + ...
%e A227134 G.f.: 1/(1-x) + x^2/((1-x)*(1-x^2)) + x^4/((1-x)*(1-x^2)*(1-x^3)) + x^6/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^9/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^12/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)) + ...
%e A227134 There are a(13)=36 such partitions, displayed here as partitions into two sorts of parts (format P:S for sort:part) where the first sort is 0 and sorts oscillate:
%e A227134 01:  [ 1:0  1:1  2:0  2:1  3:0  4:1  ]
%e A227134 02:  [ 1:0  1:1  2:0  2:1  7:0  ]
%e A227134 03:  [ 1:0  1:1  2:0  3:1  6:0  ]
%e A227134 04:  [ 1:0  1:1  2:0  4:1  5:0  ]
%e A227134 05:  [ 1:0  1:1  2:0  9:1  ]
%e A227134 06:  [ 1:0  1:1  3:0  3:1  5:0  ]
%e A227134 07:  [ 1:0  1:1  3:0  8:1  ]
%e A227134 08:  [ 1:0  1:1  4:0  7:1  ]
%e A227134 09:  [ 1:0  1:1  5:0  6:1  ]
%e A227134 10:  [ 1:0  1:1 11:0  ]
%e A227134 11:  [ 1:0  2:1  3:0  3:1  4:0  ]
%e A227134 12:  [ 1:0  2:1  3:0  7:1  ]
%e A227134 13:  [ 1:0  2:1  4:0  6:1  ]
%e A227134 14:  [ 1:0  2:1  5:0  5:1  ]
%e A227134 15:  [ 1:0  2:1 10:0  ]
%e A227134 16:  [ 1:0  3:1  4:0  5:1  ]
%e A227134 17:  [ 1:0  3:1  9:0  ]
%e A227134 18:  [ 1:0  4:1  8:0  ]
%e A227134 19:  [ 1:0  5:1  7:0  ]
%e A227134 20:  [ 1:0 12:1  ]
%e A227134 21:  [ 2:0  2:1  3:0  6:1  ]
%e A227134 22:  [ 2:0  2:1  4:0  5:1  ]
%e A227134 23:  [ 2:0  2:1  9:0  ]
%e A227134 24:  [ 2:0  3:1  4:0  4:1  ]
%e A227134 25:  [ 2:0  3:1  8:0  ]
%e A227134 26:  [ 2:0  4:1  7:0  ]
%e A227134 27:  [ 2:0  5:1  6:0  ]
%e A227134 28:  [ 2:0 11:1  ]
%e A227134 29:  [ 3:0  3:1  7:0  ]
%e A227134 30:  [ 3:0  4:1  6:0  ]
%e A227134 31:  [ 3:0 10:1  ]
%e A227134 32:  [ 4:0  4:1  5:0  ]
%e A227134 33:  [ 4:0  9:1  ]
%e A227134 34:  [ 5:0  8:1  ]
%e A227134 35:  [ 6:0  7:1  ]
%e A227134 36:  [13:0  ]
%p A227134 ## Computes A227134 and A227135 in order n^2 time and order n^2 memory:
%p A227134 a34:=proc(n) # n-th term of A227134
%p A227134   return oddMin(n,1):
%p A227134 end proc:
%p A227134 a35:=proc(n) # n-th term of A227135
%p A227134   return evenMin(n,1):
%p A227134 end proc:
%p A227134 # oddMin(n,m) finds number of partitions of n (as in A227134) but with the
%p A227134 #  minimum part AT LEAST m
%p A227134 oddMin:=proc(n, m) option remember:
%p A227134   if(n=0) then return 1: fi:  ## Start base cases
%p A227134   if((n<0) or (m>n)) then return 0: fi:
%p A227134   if(n=m) then return 1: fi:  ## End base cases
%p A227134   return oddMin(n, m+1) + evenMin(n-m, m+1) + oddMin(n-2*m, m+1): ## How many times is the element m in the partition
%p A227134 end proc:
%p A227134 # evenMin(n,m) finds number of partitions of n (as in A227135) but with the
%p A227134 #  minimum part AT LEAST m
%p A227134 evenMin:=proc(n, m) option remember:
%p A227134   if(n=0) then return 1: fi:   ## Start base cases
%p A227134   if((n<0) or (m>n)) then return 0: fi:
%p A227134   if(n=m) then return 1: fi:   ## End base cases
%p A227134   return evenMin(n, m+1) + oddMin(n-m, m+1): ## Is the element m in the partition
%p A227134 end proc:
%p A227134 ## _Patrick Devlin_, Jul 02 2013
%p A227134 # second Maple program:
%p A227134 b:= proc(n, i, t) option remember; `if`(n=0, t,
%p A227134       `if`(i*(i+1)<n, 0, add(b(n-i*j, i-1,
%p A227134       irem(t+j, 2)), j=0..min(t+1, n/i))))
%p A227134     end:
%p A227134 a:= n-> add(b(n$2, t), t=0..1):
%p A227134 seq(a(n), n=0..60);  # _Alois P. Heinz_, Feb 15 2017
%t A227134 nMax = 60; 1/(1-x) + Sum[x^Floor[(n+1)^2/4]/Product[1-x^k, {k, 1, n}], {n, 2, Ceiling @ Sqrt[4*nMax]}] + O[x]^(nMax+1) // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 15 2017, after _Paul D. Hanna_ *)
%o A227134 (PARI) {A002620(n)=floor(n/2)*ceil(n/2)}
%o A227134 {a(n)=polcoeff(1/(1-x+x*O(x^n)) + sum(m=2,sqrtint(4*n), x^A002620(m+1)/prod(k=1,m,1-x^k+x*O(x^n))),n)}
%o A227134 for(n=0,60,print1(a(n),", ")) \\ _Paul D. Hanna_, Jul 06 2013
%Y A227134 Cf. A227135 (parts may repeat after even index).
%K A227134 nonn
%O A227134 0,3
%A A227134 _Joerg Arndt_, Jul 02 2013