This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227135 #47 Feb 23 2025 07:05:03 %S A227135 1,1,1,2,2,4,4,6,8,10,12,17,20,25,31,39,47,58,69,85,102,123,145,175, %T A227135 207,246,290,343,401,473,551,646,751,875,1012,1177,1358,1570,1807, %U A227135 2083,2389,2746,3140,3597,4106,4690,5337,6082,6907,7848,8895,10085,11404,12902,14561,16438,18520,20864,23460,26385,29619 %N A227135 Partitions with parts repeated at most twice and repetition only allowed if first part has an even index (first index = 1). %H A227135 Alois P. Heinz, <a href="/A227135/b227135.txt">Table of n, a(n) for n = 0..10000</a> %F A227135 Conjecture: A227134(n) + A227135(n) = A182372(n) for n>=0, see comment in A182372. %F A227135 G.f.: 1/(1-x) + Sum_{n>=2} x^(A002620(n+2)-1) / Product_{k=1..n} (1-x^k), where A002620(n) = floor(n/2)*ceiling(n/2) forms the quarter-squares. - _Paul D. Hanna_, Jul 06 2013 %F A227135 a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = 2^(3/4) / (sqrt(5)*(1 + sqrt(5))^(3/2)) = 0.1291995618069... - _Vaclav Kotesovec_, May 28 2018, updated Mar 06 2020 %e A227135 G.f.: 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 8*x^8 +... %e A227135 G.f.: 1/(1-x) + x^3/((1-x)*(1-x^2)) + x^5/((1-x)*(1-x^2)*(1-x^3)) + x^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^11/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^15/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)) +... %e A227135 There are a(13)=25 such partitions, displayed here as partitions into two sorts of parts (format P:S for sort:part) where the first sort is 1 and sorts oscillate: %e A227135 01: [ 1:1 2:0 2:1 3:0 5:1 ] %e A227135 02: [ 1:1 2:0 2:1 4:0 4:1 ] %e A227135 03: [ 1:1 2:0 2:1 8:0 ] %e A227135 04: [ 1:1 2:0 3:1 7:0 ] %e A227135 05: [ 1:1 2:0 4:1 6:0 ] %e A227135 06: [ 1:1 2:0 10:1 ] %e A227135 07: [ 1:1 3:0 3:1 6:0 ] %e A227135 08: [ 1:1 3:0 4:1 5:0 ] %e A227135 09: [ 1:1 3:0 9:1 ] %e A227135 10: [ 1:1 4:0 8:1 ] %e A227135 11: [ 1:1 5:0 7:1 ] %e A227135 12: [ 1:1 6:0 6:1 ] %e A227135 13: [ 1:1 12:0 ] %e A227135 14: [ 2:1 3:0 3:1 5:0 ] %e A227135 15: [ 2:1 3:0 8:1 ] %e A227135 16: [ 2:1 4:0 7:1 ] %e A227135 17: [ 2:1 5:0 6:1 ] %e A227135 18: [ 2:1 11:0 ] %e A227135 19: [ 3:1 4:0 6:1 ] %e A227135 20: [ 3:1 5:0 5:1 ] %e A227135 21: [ 3:1 10:0 ] %e A227135 22: [ 4:1 9:0 ] %e A227135 23: [ 5:1 8:0 ] %e A227135 24: [ 6:1 7:0 ] %e A227135 25: [13:1 ] %p A227135 ## See A227134 %p A227135 # second Maple program: %p A227135 b:= proc(n, i, t) option remember; `if`(n=0, 1-t, %p A227135 `if`(i*(i+1)<n, 0, add(b(n-i*j, i-1, %p A227135 irem(t+j, 2)), j=0..min(t+1, n/i)))) %p A227135 end: %p A227135 a:= n-> add(b(n$2, t), t=0..1): %p A227135 seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 15 2017 %t A227135 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1 - t, If[i*(i + 1) < n, 0, Sum[ b[n - i*j, i - 1, Mod[t + j, 2]], {j, 0, Min[t + 1, n/i]}]]]; %t A227135 a[n_] := Sum[b[n, n, t], {t, 0, 1}]; %t A227135 Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 21 2018, after _Alois P. Heinz_ *) %o A227135 (PARI) {A002620(n)=floor(n/2)*ceil(n/2)} %o A227135 {a(n)=polcoeff(1/(1-x+x*O(x^n)) + sum(m=2,sqrtint(4*n), x^(A002620(m+2)-1)/prod(k=1,m,1-x^k+x*O(x^n))),n)} %o A227135 for(n=0,60,print1(a(n),", ")) \\ _Paul D. Hanna_, Jul 06 2013 %Y A227135 Cf. A227134 (parts may repeat after odd index). %K A227135 nonn %O A227135 0,4 %A A227135 _Joerg Arndt_, Jul 02 2013