cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227135 Partitions with parts repeated at most twice and repetition only allowed if first part has an even index (first index = 1).

This page as a plain text file.
%I A227135 #47 Feb 23 2025 07:05:03
%S A227135 1,1,1,2,2,4,4,6,8,10,12,17,20,25,31,39,47,58,69,85,102,123,145,175,
%T A227135 207,246,290,343,401,473,551,646,751,875,1012,1177,1358,1570,1807,
%U A227135 2083,2389,2746,3140,3597,4106,4690,5337,6082,6907,7848,8895,10085,11404,12902,14561,16438,18520,20864,23460,26385,29619
%N A227135 Partitions with parts repeated at most twice and repetition only allowed if first part has an even index (first index = 1).
%H A227135 Alois P. Heinz, <a href="/A227135/b227135.txt">Table of n, a(n) for n = 0..10000</a>
%F A227135 Conjecture: A227134(n) + A227135(n) = A182372(n) for n>=0, see comment in A182372.
%F A227135 G.f.: 1/(1-x) + Sum_{n>=2} x^(A002620(n+2)-1) / Product_{k=1..n} (1-x^k), where A002620(n) = floor(n/2)*ceiling(n/2) forms the quarter-squares. - _Paul D. Hanna_, Jul 06 2013
%F A227135 a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = 2^(3/4) / (sqrt(5)*(1 + sqrt(5))^(3/2)) = 0.1291995618069... - _Vaclav Kotesovec_, May 28 2018, updated Mar 06 2020
%e A227135 G.f.: 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 8*x^8 +...
%e A227135 G.f.: 1/(1-x) + x^3/((1-x)*(1-x^2)) + x^5/((1-x)*(1-x^2)*(1-x^3)) + x^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^11/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^15/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)) +...
%e A227135 There are a(13)=25 such partitions, displayed here as partitions into two sorts of parts (format P:S for sort:part) where the first sort is 1 and sorts oscillate:
%e A227135 01:  [ 1:1  2:0  2:1  3:0  5:1  ]
%e A227135 02:  [ 1:1  2:0  2:1  4:0  4:1  ]
%e A227135 03:  [ 1:1  2:0  2:1  8:0  ]
%e A227135 04:  [ 1:1  2:0  3:1  7:0  ]
%e A227135 05:  [ 1:1  2:0  4:1  6:0  ]
%e A227135 06:  [ 1:1  2:0 10:1  ]
%e A227135 07:  [ 1:1  3:0  3:1  6:0  ]
%e A227135 08:  [ 1:1  3:0  4:1  5:0  ]
%e A227135 09:  [ 1:1  3:0  9:1  ]
%e A227135 10:  [ 1:1  4:0  8:1  ]
%e A227135 11:  [ 1:1  5:0  7:1  ]
%e A227135 12:  [ 1:1  6:0  6:1  ]
%e A227135 13:  [ 1:1 12:0  ]
%e A227135 14:  [ 2:1  3:0  3:1  5:0  ]
%e A227135 15:  [ 2:1  3:0  8:1  ]
%e A227135 16:  [ 2:1  4:0  7:1  ]
%e A227135 17:  [ 2:1  5:0  6:1  ]
%e A227135 18:  [ 2:1 11:0  ]
%e A227135 19:  [ 3:1  4:0  6:1  ]
%e A227135 20:  [ 3:1  5:0  5:1  ]
%e A227135 21:  [ 3:1 10:0  ]
%e A227135 22:  [ 4:1  9:0  ]
%e A227135 23:  [ 5:1  8:0  ]
%e A227135 24:  [ 6:1  7:0  ]
%e A227135 25:  [13:1  ]
%p A227135 ## See A227134
%p A227135 # second Maple program:
%p A227135 b:= proc(n, i, t) option remember; `if`(n=0, 1-t,
%p A227135       `if`(i*(i+1)<n, 0, add(b(n-i*j, i-1,
%p A227135       irem(t+j, 2)), j=0..min(t+1, n/i))))
%p A227135     end:
%p A227135 a:= n-> add(b(n$2, t), t=0..1):
%p A227135 seq(a(n), n=0..60);  # _Alois P. Heinz_, Feb 15 2017
%t A227135 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1 - t, If[i*(i + 1) < n, 0, Sum[ b[n - i*j, i - 1, Mod[t + j, 2]], {j, 0, Min[t + 1, n/i]}]]];
%t A227135 a[n_] := Sum[b[n, n, t], {t, 0, 1}];
%t A227135 Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 21 2018, after _Alois P. Heinz_ *)
%o A227135 (PARI) {A002620(n)=floor(n/2)*ceil(n/2)}
%o A227135 {a(n)=polcoeff(1/(1-x+x*O(x^n)) + sum(m=2,sqrtint(4*n), x^(A002620(m+2)-1)/prod(k=1,m,1-x^k+x*O(x^n))),n)}
%o A227135 for(n=0,60,print1(a(n),", ")) \\ _Paul D. Hanna_, Jul 06 2013
%Y A227135 Cf. A227134 (parts may repeat after odd index).
%K A227135 nonn
%O A227135 0,4
%A A227135 _Joerg Arndt_, Jul 02 2013