This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227153 #38 May 23 2025 01:12:46 %S A227153 1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,4,4,3,3,3,3,6,6,1,1,1,1,2,2,1,1,1,1, %T A227153 2,2,2,2,2,2,4,4,3,3,3,3,6,6,2,2,2,2,4,4,2,2,2,2,4,4,4,4,4,4,8,8,6,6, %U A227153 6,6,12,12,3,3,3,3,6,6,3,3,3,3,6,6,6,6,6,6 %N A227153 Product of nonzero digits of n in factorial base. %C A227153 a(0) = 1 as an empty product always gives 1. %H A227153 Antti Karttunen, <a href="/A227153/b227153.txt">Table of n, a(n) for n = 0..5040</a> %F A227153 For all n, a(A227157(n)) = A208575(A227157(n)). %t A227153 a[n_] := Module[{k = n, m = 2, r, p = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, If[r > 0, p *= r]; m++]; p]; Array[a, 100, 0] (* _Amiram Eldar_, Feb 07 2024 *) %o A227153 (MIT/GNU Scheme) %o A227153 (define (A227153 n) (apply * (delete-matching-items (n->factbase n) zero?))) %o A227153 (define (n->factbase n) (let loop ((n n) (fex (if (zero? n) (list 0) (list))) (i 2)) (cond ((zero? n) fex) (else (loop (floor->exact (/ n i)) (cons (modulo n i) fex) (1+ i)))))) %o A227153 (Python) %o A227153 from functools import reduce %o A227153 from operator import mul %o A227153 def A(n, p=2): %o A227153 return n if n<p else A(n//p, p+1)*10 + n%p %o A227153 def a(n): %o A227153 return 1 if n<2 else reduce(mul, [int(i) for i in str(A(n)) if i!="0"]) %o A227153 print([a(n) for n in range(201)]) # _Indranil Ghosh_, Jun 19 2017 %o A227153 (Python) %o A227153 def a(n, k=2): return max(n % k, 1) * a(n // k, k + 1) if n else 1 # _David Radcliffe_, May 22 2025 %Y A227153 A227157 gives the positions where equal with A208575. %Y A227153 Cf. A007623, A227154, A227191. %K A227153 nonn,base %O A227153 0,5 %A A227153 _Antti Karttunen_, Jul 04 2013