cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227155 Number of composites removed in each step of the Sieve of Eratosthenes for 10^7.

This page as a plain text file.
%I A227155 #9 Jul 12 2013 13:42:13
%S A227155 4999999,1666666,666666,380952,207791,159839,112829,95016,74356,56405,
%T A227155 50949,41317,36293,33780,30205,26228,23123,21975,19655,18249,17467,
%U A227155 15871,14876,13668,12358,11710,11344,10779,10451,9955,8748,8398,7956,7768,7181,7034,6724
%N A227155 Number of composites removed in each step of the Sieve of Eratosthenes for 10^7.
%C A227155 The number of composites <= 10^7 for which the n-th prime is the least prime factor.
%C A227155 The number of multiples of the n-th prime <= 10^7 that do not have any prime < the n-th prime as a factor.
%C A227155 The greatest n for which the n-th prime is a multiple <= 10^7 without a prime factor < n-th prime = primepi(sqrt(10^7)).
%H A227155 Eric F. O'Brien, <a href="/A227155/b227155.txt">Table of n, a(n) for n = 1..446</a>
%F A227155 a(1) = 10^7 \ 2 - 1.
%F A227155 a(2) = 10^7 \ 3 - 10^7 \ 6 - 1.
%F A227155 a(3) = 10^7 \ 5 - 10^7 \ 10 - 10^7 \ 15 + 10^7 \ 30 - 1.
%e A227155 For n = 2, prime(n) = 3, a(n) = 1666666: 3 divides 10^7 3333333 times.
%e A227155 6 is the common multiple of 2 and 3, thus 10^7 \ 6 multiples of 3 (1666666) have already been eliminated by a(1).
%e A227155 3333333 less 1666666 = 1666667, less 1 because 3 itself is not eliminated.
%e A227155 Thus a(2) = 3333333 - 1666666 - 1 = 1666666.
%Y A227155 Cf. A133228, A145540, A145538, A145539, A145532-A145537.
%K A227155 nonn,fini
%O A227155 1,1
%A A227155 _Eric F. O'Brien_, Jul 02 2013