A227162 Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.
4, 18, 62, 193, 558, 1507, 3828, 9149, 20609, 43918, 88960, 172130, 319637, 572050, 990413, 1664308, 2722302, 4345275, 6783191, 10375943, 15578976, 22994469, 33408938, 47838207, 67580783, 94280764, 130001506, 177311376, 239383023
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1....1..1..1....1..0..0....1..0..0....1..0..0....0..0..0....0..0..0 ..1..1..0....1..1..1....0..0..1....0..0..1....0..0..0....0..1..1....0..1..1 ..1..1..0....1..1..1....0..0..1....0..0..0....0..0..1....0..1..1....0..1..0 ..1..0..0....1..1..0....0..0..0....0..0..0....0..0..1....0..1..0....0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A227165.
Formula
Empirical: a(n) = (1/90720)*n^9 + (1/8064)*n^8 + (17/30240)*n^7 + (13/960)*n^6 - (131/4320)*n^5 + (181/384)*n^4 - (146161/90720)*n^3 + (171511/10080)*n^2 - (25129/504)*n + 58 for n>3.
Conjectures from Colin Barker, Sep 07 2018: (Start)
G.f.: x*(4 - 22*x + 62*x^2 - 97*x^3 + 98*x^4 - 56*x^5 + 32*x^6 - 70*x^7 + 123*x^8 - 113*x^9 + 55*x^10 - 13*x^11 + x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)