cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227162 Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

4, 18, 62, 193, 558, 1507, 3828, 9149, 20609, 43918, 88960, 172130, 319637, 572050, 990413, 1664308, 2722302, 4345275, 6783191, 10375943, 15578976, 22994469, 33408938, 47838207, 67580783, 94280764, 130001506, 177311376, 239383023
Offset: 1

Views

Author

R. H. Hardin, Jul 03 2013

Keywords

Examples

			Some solutions for n=4:
..1..1..1....1..1..1....1..0..0....1..0..0....1..0..0....0..0..0....0..0..0
..1..1..0....1..1..1....0..0..1....0..0..1....0..0..0....0..1..1....0..1..1
..1..1..0....1..1..1....0..0..1....0..0..0....0..0..1....0..1..1....0..1..0
..1..0..0....1..1..0....0..0..0....0..0..0....0..0..1....0..1..0....0..0..1
		

Crossrefs

Column 3 of A227165.

Formula

Empirical: a(n) = (1/90720)*n^9 + (1/8064)*n^8 + (17/30240)*n^7 + (13/960)*n^6 - (131/4320)*n^5 + (181/384)*n^4 - (146161/90720)*n^3 + (171511/10080)*n^2 - (25129/504)*n + 58 for n>3.
Conjectures from Colin Barker, Sep 07 2018: (Start)
G.f.: x*(4 - 22*x + 62*x^2 - 97*x^3 + 98*x^4 - 56*x^5 + 32*x^6 - 70*x^7 + 123*x^8 - 113*x^9 + 55*x^10 - 13*x^11 + x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)