This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227169 #40 Dec 21 2015 04:15:59 %S A227169 1,6,45,392,3780,39204,429429,4907760,58023108,705264040,8772399636, %T A227169 111263122656,1434941066000,18775651948200,248797110637125, %U A227169 3333772874210400,45115597383228900,615974564891763000,8477309210264363700,117511846058893572000 %N A227169 a(n) = 3*((2*n+2)!)^2 / (n!*(n+1)!*(n+2)!*(n+3)!). %H A227169 T. D. Noe, <a href="/A227169/b227169.txt">Table of n, a(n) for n = 0..200</a> %F A227169 In Maple notation, %F A227169 ogf(z) = 3/(4*z^2) +(1/12288)*(-98304*z^2-2048*z+512)*EllipticK(4*sqrt(z))/(z^3*Pi) +(1/12288)*(-20480*z-512)*EllipticE(4*sqrt(z))/(z^3*Pi); %F A227169 egf(z)=hypergeom([3/2, 3/2, 2], [1, 3, 4], 16*z), a 3F3 hypergeometric function. %F A227169 Integral representation as the n-th moment of a signed function w(x) of bounded variation, 0<=x<=16: a(n) = Integral_{x=0..16}x^n*w(x), n>=0, where w(x) is the Meijer G function, w(x) = -3*MeijerG([[0], [2, 3]], [[1/2, 1/2], [1]], (1/16)*x)/Pi, satisfying w(16)=w(0)=0, w(x)<0 for x < 0.47. %F A227169 The above Meijer G function cannot be represented by any other special function. %F A227169 (n+3)*(n+2)*a(n) -18*(n+1)^2*a(n-1) +8*(2*n-1)^2*a(n-2)=0. - _R. J. Mathar_, Jul 14 2013 %F A227169 a(n) = 3*A135389(n)/((n+2)*(n+3)) = 3*A145600(n+1)/(n+3). - _R. J. Mathar_, Jul 14 2013 %p A227169 seq(3*((2*n+2)!)^2/(n!*(n+1)!*(n+2)!*(n+3)!),n=0..15); %t A227169 Table[3*((2*n + 2)!)^2/(n!*(n + 1)!*(n + 2)!*(n + 3)!), {n, 0, 20}] (* _T. D. Noe_, Jul 12 2013 *) %o A227169 (Sage) %o A227169 def a(n): return 3*(n+1)*(n+2)^2*(n+3)^3*gamma(2*n+3)^2/gamma(n+4)^4 %o A227169 [a(n) for n in (0..16)] # _Peter Luschny_, Jul 12 2013 %K A227169 nonn %O A227169 0,2 %A A227169 _Karol A. Penson_, Jul 12 2013