cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247244 Smallest prime p such that (n^p + (n+1)^p)/(2n+1) is prime, or -1 if no such p exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 7, 3, 7, 53, 47, 3, 7, 3, 3, 41, 3, 5, 11, 3, 3, 11, 11, 3, 5, 103, 3, 37, 17, 7, 13, 37, 3, 269, 17, 5, 17, 3, 5, 139, 3, 11, 78697, 5, 17, 3671, 13, 491, 5, 3, 31, 43, 7, 3, 7, 2633, 3, 7, 3, 5, 349, 3, 41, 31, 5, 3, 7, 127, 3, 19, 3, 11, 19, 101, 3, 5, 3, 3
Offset: 1

Views

Author

Eric Chen, Nov 28 2014

Keywords

Comments

All terms are odd primes.
a(79) > 10000, if it exists.
a(80)..a(93) = {3, 7, 13, 7, 19, 31, 13, 163, 797, 3, 3, 11, 13, 5}, a(95)..a(112) = {5, 2657, 19, 787, 3, 17, 3, 7, 11, 1009, 3, 61, 53, 2371, 5, 3, 3, 11}, a(114)..a(126) = {103, 461, 7, 3, 13, 3, 7, 5, 31, 41, 23, 41, 587}, a(128)..a(132) = {7, 13, 37, 3, 23}, a(n) is currently unknown for n = {79, 94, 113, 127, 133, ...} (see the status file under Links).

Examples

			a(10) = 53 because (10^p + 11^p)/21 is composite for all p < 53 and prime for p = 53.
		

Crossrefs

Programs

  • Mathematica
    lmt = 4200; f[n_] := Block[{p = 2}, While[p < lmt && !PrimeQ[((n + 1)^p + n^p)/(2n + 1)], p = NextPrime@ p]; If[p > lmt, 0, p]]; Do[Print[{n, f[n] // Timing}], {n, 1000}] (* Robert G. Wilson v, Dec 01 2014 *)
  • PARI
    a(n)=forprime(p=3, , if(ispseudoprime((n^p+(n+1)^p)/(2*n+1)), return(p)))

Formula

a(n) = 3 if and only if n^2 + n + 1 is a prime (A002384).

Extensions

a(43) from Aurelien Gibier, Nov 27 2023
Showing 1-1 of 1 results.