This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227200 #72 Sep 21 2023 19:26:08 %S A227200 0,1,0,-1,-5,-14,-35,-81,-180,-389,-825,-1726,-3575,-7349,-15020, %T A227200 -30561,-61965,-125294,-252795,-509161,-1024100,-2057549,-4130225, %U A227200 -8284926,-16609455,-33282989,-66669660,-133507081,-267285605,-535010414,-1070731475 %N A227200 a(n) = a(n-1) + a(n-2) - 2^(n-1) with a(0)=a(2)=0, a(1)=-a(3)=1, a(4)=-5. %H A227200 Vincenzo Librandi, <a href="/A227200/b227200.txt">Table of n, a(n) for n = 0..1000</a> %H A227200 C. N. Phadte and S. P. Pethe, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from205to210.pdf">On Second Order Non-homogeneous recurrence relation</a>, Annales Mathematicae et informaticae, 41 (2013), pp. 205-210. %H A227200 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-2). %F A227200 G.f.: x*(1-3*x)/((1-2*x)*(1-x-x^2)). %F A227200 a(n) = -(-1)^n*A142585(n+1) = A000032(n+1) - 2^n. [_Bruno Berselli_, Oct 03 2013] %F A227200 a(n) = 3*a(n-1) -a(n-2) -2*a(n-3). [_Bruno Berselli_, Oct 03 2013] %t A227200 Table[LucasL[n + 1] - 2^n, {n, 0, 30}] (* _Bruno Berselli_, Oct 03 2013 *) %t A227200 CoefficientList[Series[x (1 - 3 x)/((1 - 2 x) (1 - x - x^2)), {x, 0, 40}], x](* _Vincenzo Librandi_, Oct 05 2013 *) %o A227200 (BASIC) %o A227200 LET N=0 %o A227200 LET L=0 %o A227200 LET M=1 %o A227200 PRINT L %o A227200 PRINT M %o A227200 FOR I=1 TO 30 %o A227200 LET N=M+L-(2)^(I-1) %o A227200 PRINT N %o A227200 LET L=M %o A227200 LET M=N %o A227200 NEXT I %o A227200 END %o A227200 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1-3*x)/((1-2*x)*(1-x-x^2)))); // _Bruno Berselli_, Oct 03 2013 %o A227200 (PARI) a(n)=fibonacci(n)+fibonacci(n+2)-2^n \\ _Charles R Greathouse IV_, Oct 03 2013 %o A227200 (Magma) I:=[0,1,0,-1,-5]; [n le 5 select I[n] else Self(n-1)+Self(n-2)-2^(n-3): n in [1..35]]; // _Vincenzo Librandi_, Oct 05 2013 %Y A227200 Cf. versions with different signs: A027974, A142585. %Y A227200 Cf. A000032, A000045. %K A227200 sign,easy %O A227200 0,5 %A A227200 _Chandrakant N Phadte_, Sep 18 2013 %E A227200 More terms from _Bruno Berselli_, Oct 03 2013