A227206 Largest number in an integer 6-tuple (a, b, c, d, e, f) satisfying the Markoff(6) equation a^2+b^2+c^2+d^2+e^2+f^2 = 6*a*b*c*d*e*f.
1, 5, 29, 169, 869, 985, 5741, 26041, 29405, 33461, 151201, 195025, 756029, 780361, 998789, 1136689, 5116301, 6625109, 23384789, 26308105, 29816641, 33929309, 38613965, 135777769, 225058681, 657744361, 678888869, 700763309, 788361985, 864683429, 890206969, 1012771061, 1152597605
Offset: 1
Keywords
Examples
1 is in the sequence since (1, 1, 1, 1, 1, 1) is a solution to a^2+b^2+c^2+d^2+e^2+f^2 = 6*a*b*c*d*e*f. 5, 29, and 169 are in the sequence since (5, 1, 1, 1, 1, 1), (29, 5, 1, 1, 1, 1), (169, 29, 1, 1, 1, 1) are solutions.
Comments